import os import unittest import sys import torch import torchvision from PIL import Image from torchvision.io.image import read_png, decode_png, read_jpeg, decode_jpeg import numpy as np IMAGE_ROOT = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets") IMAGE_DIR = os.path.join(IMAGE_ROOT, "fakedata", "imagefolder") def get_images(directory, img_ext): assert os.path.isdir(directory) for root, _, files in os.walk(directory): for fl in files: _, ext = os.path.splitext(fl) if ext == img_ext: yield os.path.join(root, fl) class ImageTester(unittest.TestCase): def test_read_jpeg(self): for img_path in get_images(IMAGE_ROOT, "jpg"): img_pil = torch.from_numpy(np.array(Image.open(img_path))) img_ljpeg = read_jpeg(img_path) norm = img_ljpeg.shape[0] * img_ljpeg.shape[1] * img_ljpeg.shape[2] * 255 err = torch.abs(img_ljpeg.flatten().float() - img_pil.flatten().float()).sum().float() / (norm) self.assertLessEqual(err, 1e-2) def test_decode_jpeg(self): for img_path in get_images(IMAGE_ROOT, "jpg"): img_pil = torch.from_numpy(np.array(Image.open(img_path))) size = os.path.getsize(img_path) img_ljpeg = decode_jpeg(torch.from_file(img_path, dtype=torch.uint8, size=size)) norm = img_ljpeg.shape[0] * img_ljpeg.shape[1] * img_ljpeg.shape[2] * 255 err = torch.abs(img_ljpeg.flatten().float() - img_pil.flatten().float()).sum().float() / (norm) self.assertLessEqual(err, 1e-2) with self.assertRaisesRegex(ValueError, "Expected a non empty 1-dimensional tensor."): decode_jpeg(torch.empty((100, 1), dtype=torch.uint8)) with self.assertRaisesRegex(ValueError, "Expected a torch.uint8 tensor."): decode_jpeg(torch.empty((100, ), dtype=torch.float16)) with self.assertRaisesRegex(RuntimeError, "Error while reading jpeg headers"): decode_jpeg(torch.empty((100), dtype=torch.uint8)) def test_read_png(self): for img_path in get_images(IMAGE_DIR, "png"): img_pil = torch.from_numpy(np.array(Image.open(img_path))) img_lpng = read_png(img_path) self.assertEqual(img_lpng, img_pil) def test_decode_png(self): for img_path in get_images(IMAGE_DIR, "png"): img_pil = torch.from_numpy(np.array(Image.open(img_path))) size = os.path.getsize(img_path) img_lpng = decode_png(torch.from_file(img_path, dtype=torch.uint8, size=size)) self.assertEqual(img_lpng, img_pil) self.assertEqual(decode_png(torch.empty()), torch.empty()) self.assertEqual(decode_png(torch.randint(3, 5, (300,))), torch.empty()) if __name__ == '__main__': unittest.main()