from __future__ import division """ helper class that supports empty tensors on some nn functions. Ideally, add support directly in PyTorch to empty tensors in those functions. This can be removed once https://github.com/pytorch/pytorch/issues/12013 is implemented """ import math import torch from torch.nn.modules.utils import _ntuple class _NewEmptyTensorOp(torch.autograd.Function): @staticmethod def forward(ctx, x, new_shape): ctx.shape = x.shape return x.new_empty(new_shape) @staticmethod def backward(ctx, grad): shape = ctx.shape return _NewEmptyTensorOp.apply(grad, shape), None class Conv2d(torch.nn.Conv2d): def forward(self, x): if x.numel() > 0: return super(Conv2d, self).forward(x) # get output shape output_shape = [ (i + 2 * p - (di * (k - 1) + 1)) // d + 1 for i, p, di, k, d in zip( x.shape[-2:], self.padding, self.dilation, self.kernel_size, self.stride ) ] output_shape = [x.shape[0], self.weight.shape[0]] + output_shape return _NewEmptyTensorOp.apply(x, output_shape) class ConvTranspose2d(torch.nn.ConvTranspose2d): def forward(self, x): if x.numel() > 0: return super(ConvTranspose2d, self).forward(x) # get output shape output_shape = [ (i - 1) * d - 2 * p + (di * (k - 1) + 1) + op for i, p, di, k, d, op in zip( x.shape[-2:], self.padding, self.dilation, self.kernel_size, self.stride, self.output_padding, ) ] output_shape = [x.shape[0], self.bias.shape[0]] + output_shape return _NewEmptyTensorOp.apply(x, output_shape) class BatchNorm2d(torch.nn.BatchNorm2d): def forward(self, x): if x.numel() > 0: return super(BatchNorm2d, self).forward(x) # get output shape output_shape = x.shape return _NewEmptyTensorOp.apply(x, output_shape) def interpolate( input, size=None, scale_factor=None, mode="nearest", align_corners=None ): if input.numel() > 0: return torch.nn.functional.interpolate( input, size, scale_factor, mode, align_corners ) def _check_size_scale_factor(dim): if size is None and scale_factor is None: raise ValueError("either size or scale_factor should be defined") if size is not None and scale_factor is not None: raise ValueError("only one of size or scale_factor should be defined") if ( scale_factor is not None and isinstance(scale_factor, tuple) and len(scale_factor) != dim ): raise ValueError( "scale_factor shape must match input shape. " "Input is {}D, scale_factor size is {}".format(dim, len(scale_factor)) ) def _output_size(dim): _check_size_scale_factor(dim) if size is not None: return size scale_factors = _ntuple(dim)(scale_factor) # math.floor might return float in py2.7 return [ int(math.floor(input.size(i + 2) * scale_factors[i])) for i in range(dim) ] output_shape = tuple(_output_size(2)) output_shape = input.shape[:-2] + output_shape return _NewEmptyTensorOp.apply(input, output_shape) # This is not in nn class FrozenBatchNorm2d(torch.jit.ScriptModule): """ BatchNorm2d where the batch statistics and the affine parameters are fixed """ def __init__(self, n): super(FrozenBatchNorm2d, self).__init__() self.register_buffer("weight", torch.ones(n)) self.register_buffer("bias", torch.zeros(n)) self.register_buffer("running_mean", torch.zeros(n)) self.register_buffer("running_var", torch.ones(n)) @torch.jit.script_method def forward(self, x): # move reshapes to the beginning # to make it fuser-friendly w = self.weight.reshape(1, -1, 1, 1) b = self.bias.reshape(1, -1, 1, 1) rv = self.running_var.reshape(1, -1, 1, 1) rm = self.running_mean.reshape(1, -1, 1, 1) scale = w * rv.rsqrt() bias = b - rm * scale return x * scale + bias