from __future__ import print_function from PIL import Image import os import os.path import errno import numpy as np import sys if sys.version_info[0] == 2: import cPickle as pickle else: import pickle import torch.utils.data as data from .utils import download_url, check_integrity class SEMEION(data.Dataset): """`SEMEION `_ Dataset. Args: root (string): Root directory of dataset where directory ``semeion.py`` exists. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ url = "http://archive.ics.uci.edu/ml/machine-learning-databases/semeion/semeion.data" filename = "semeion.data" md5_checksum = 'cb545d371d2ce14ec121470795a77432' def __init__(self, root, transform=None, target_transform=None, download=True): self.root = os.path.expanduser(root) self.transform = transform self.target_transform = target_transform if download: self.download() if not self._check_integrity(): raise RuntimeError('Dataset not found or corrupted.' + ' You can use download=True to download it') self.data = [] self.labels = [] fp = os.path.join(root, self.filename) data = np.loadtxt(fp) # convert value to 8 bit unsigned integer # color (white #255) the pixels self.data = (data[:, :256] * 255).astype('uint8') self.data = np.reshape(self.data, (-1, 16, 16)) self.labels = np.nonzero(data[:, 256:])[1] def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], int(self.labels[index]) # doing this so that it is consistent with all other datasets # to return a PIL Image img = Image.fromarray(img, mode='L') if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self): return len(self.data) def _check_integrity(self): root = self.root fpath = os.path.join(root, self.filename) if not check_integrity(fpath, self.md5_checksum): return False return True def download(self): if self._check_integrity(): print('Files already downloaded and verified') return root = self.root download_url(self.url, root, self.filename, self.md5_checksum) def __repr__(self): fmt_str = 'Dataset ' + self.__class__.__name__ + '\n' fmt_str += ' Number of datapoints: {}\n'.format(self.__len__()) fmt_str += ' Root Location: {}\n'.format(self.root) tmp = ' Transforms (if any): ' fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp))) tmp = ' Target Transforms (if any): ' fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp))) return fmt_str