""" This file is part of the private API. Please do not use directly these classes as they will be modified on future versions without warning. The classes should be accessed only via the transforms argument of Weights. """ from typing import Optional, Tuple import torch from torch import Tensor, nn from . import functional as F, InterpolationMode __all__ = [ "ObjectDetection", "ImageClassification", "VideoClassification", "SemanticSegmentation", "OpticalFlow", ] class ObjectDetection(nn.Module): def forward(self, img: Tensor) -> Tensor: if not isinstance(img, Tensor): img = F.pil_to_tensor(img) return F.convert_image_dtype(img, torch.float) class ImageClassification(nn.Module): def __init__( self, *, crop_size: int, resize_size: int = 256, mean: Tuple[float, ...] = (0.485, 0.456, 0.406), std: Tuple[float, ...] = (0.229, 0.224, 0.225), interpolation: InterpolationMode = InterpolationMode.BILINEAR, ) -> None: super().__init__() self._crop_size = [crop_size] self._size = [resize_size] self._mean = list(mean) self._std = list(std) self._interpolation = interpolation def forward(self, img: Tensor) -> Tensor: img = F.resize(img, self._size, interpolation=self._interpolation) img = F.center_crop(img, self._crop_size) if not isinstance(img, Tensor): img = F.pil_to_tensor(img) img = F.convert_image_dtype(img, torch.float) img = F.normalize(img, mean=self._mean, std=self._std) return img class VideoClassification(nn.Module): def __init__( self, *, crop_size: Tuple[int, int], resize_size: Tuple[int, int], mean: Tuple[float, ...] = (0.43216, 0.394666, 0.37645), std: Tuple[float, ...] = (0.22803, 0.22145, 0.216989), interpolation: InterpolationMode = InterpolationMode.BILINEAR, ) -> None: super().__init__() self._crop_size = list(crop_size) self._size = list(resize_size) self._mean = list(mean) self._std = list(std) self._interpolation = interpolation def forward(self, vid: Tensor) -> Tensor: need_squeeze = False if vid.ndim < 5: vid = vid.unsqueeze(dim=0) need_squeeze = True vid = vid.permute(0, 1, 4, 2, 3) # (N, T, H, W, C) => (N, T, C, H, W) N, T, C, H, W = vid.shape vid = vid.view(-1, C, H, W) vid = F.resize(vid, self._size, interpolation=self._interpolation) vid = F.center_crop(vid, self._crop_size) vid = F.convert_image_dtype(vid, torch.float) vid = F.normalize(vid, mean=self._mean, std=self._std) H, W = self._crop_size vid = vid.view(N, T, C, H, W) vid = vid.permute(0, 2, 1, 3, 4) # (N, T, C, H, W) => (N, C, T, H, W) if need_squeeze: vid = vid.squeeze(dim=0) return vid class SemanticSegmentation(nn.Module): def __init__( self, *, resize_size: Optional[int], mean: Tuple[float, ...] = (0.485, 0.456, 0.406), std: Tuple[float, ...] = (0.229, 0.224, 0.225), interpolation: InterpolationMode = InterpolationMode.BILINEAR, ) -> None: super().__init__() self._size = [resize_size] if resize_size is not None else None self._mean = list(mean) self._std = list(std) self._interpolation = interpolation def forward(self, img: Tensor) -> Tensor: if isinstance(self._size, list): img = F.resize(img, self._size, interpolation=self._interpolation) if not isinstance(img, Tensor): img = F.pil_to_tensor(img) img = F.convert_image_dtype(img, torch.float) img = F.normalize(img, mean=self._mean, std=self._std) return img class OpticalFlow(nn.Module): def forward(self, img1: Tensor, img2: Tensor) -> Tuple[Tensor, Tensor]: if not isinstance(img1, Tensor): img1 = F.pil_to_tensor(img1) if not isinstance(img2, Tensor): img2 = F.pil_to_tensor(img2) img1 = F.convert_image_dtype(img1, torch.float) img2 = F.convert_image_dtype(img2, torch.float) # map [0, 1] into [-1, 1] img1 = F.normalize(img1, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) img2 = F.normalize(img2, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) img1 = img1.contiguous() img2 = img2.contiguous() return img1, img2