#include "alexnet.h" #include "modelsimpl.h" namespace vision { namespace models { AlexNetImpl::AlexNetImpl(int64_t num_classes) { features = torch::nn::Sequential( torch::nn::Conv2d( torch::nn::Conv2dOptions(3, 64, 11).stride(4).padding(2)), torch::nn::Functional(modelsimpl::relu_), torch::nn::Functional(modelsimpl::max_pool2d, 3, 2), torch::nn::Conv2d(torch::nn::Conv2dOptions(64, 192, 5).padding(2)), torch::nn::Functional(modelsimpl::relu_), torch::nn::Functional(modelsimpl::max_pool2d, 3, 2), torch::nn::Conv2d(torch::nn::Conv2dOptions(192, 384, 3).padding(1)), torch::nn::Functional(modelsimpl::relu_), torch::nn::Conv2d(torch::nn::Conv2dOptions(384, 256, 3).padding(1)), torch::nn::Functional(modelsimpl::relu_), torch::nn::Conv2d(torch::nn::Conv2dOptions(256, 256, 3).padding(1)), torch::nn::Functional(modelsimpl::relu_), torch::nn::Functional(modelsimpl::max_pool2d, 3, 2)); classifier = torch::nn::Sequential( torch::nn::Dropout(), torch::nn::Linear(256 * 6 * 6, 4096), torch::nn::Functional(torch::relu), torch::nn::Dropout(), torch::nn::Linear(4096, 4096), torch::nn::Functional(torch::relu), torch::nn::Linear(4096, num_classes)); register_module("features", features); register_module("classifier", classifier); } torch::Tensor AlexNetImpl::forward(torch::Tensor x) { x = features->forward(x); x = torch::adaptive_avg_pool2d(x, {6, 6}); x = x.view({x.size(0), -1}); x = classifier->forward(x); return x; } } // namespace models } // namespace vision