import warnings from typing import Any import torch import torch.nn as nn from torch import Tensor from torch.nn import functional as F from torchvision.models.googlenet import GoogLeNetOutputs, BasicConv2d, Inception, InceptionAux, GoogLeNet, model_urls from ..._internally_replaced_utils import load_state_dict_from_url from .utils import _replace_relu, quantize_model __all__ = ["QuantizableGoogLeNet", "googlenet"] quant_model_urls = { # fp32 GoogLeNet ported from TensorFlow, with weights quantized in PyTorch "googlenet_fbgemm": "https://download.pytorch.org/models/quantized/googlenet_fbgemm-c00238cf.pth", } class QuantizableBasicConv2d(BasicConv2d): def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) self.relu = nn.ReLU() def forward(self, x: Tensor) -> Tensor: x = self.conv(x) x = self.bn(x) x = self.relu(x) return x def fuse_model(self) -> None: torch.ao.quantization.fuse_modules(self, ["conv", "bn", "relu"], inplace=True) class QuantizableInception(Inception): def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(conv_block=QuantizableBasicConv2d, *args, **kwargs) # type: ignore[misc] self.cat = nn.quantized.FloatFunctional() def forward(self, x: Tensor) -> Tensor: outputs = self._forward(x) return self.cat.cat(outputs, 1) class QuantizableInceptionAux(InceptionAux): # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659 def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(conv_block=QuantizableBasicConv2d, *args, **kwargs) # type: ignore[misc] self.relu = nn.ReLU() def forward(self, x: Tensor) -> Tensor: # aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14 x = F.adaptive_avg_pool2d(x, (4, 4)) # aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4 x = self.conv(x) # N x 128 x 4 x 4 x = torch.flatten(x, 1) # N x 2048 x = self.relu(self.fc1(x)) # N x 1024 x = self.dropout(x) # N x 1024 x = self.fc2(x) # N x 1000 (num_classes) return x class QuantizableGoogLeNet(GoogLeNet): # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659 def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__( # type: ignore[misc] blocks=[QuantizableBasicConv2d, QuantizableInception, QuantizableInceptionAux], *args, **kwargs ) self.quant = torch.ao.quantization.QuantStub() self.dequant = torch.ao.quantization.DeQuantStub() def forward(self, x: Tensor) -> GoogLeNetOutputs: x = self._transform_input(x) x = self.quant(x) x, aux1, aux2 = self._forward(x) x = self.dequant(x) aux_defined = self.training and self.aux_logits if torch.jit.is_scripting(): if not aux_defined: warnings.warn("Scripted QuantizableGoogleNet always returns GoogleNetOutputs Tuple") return GoogLeNetOutputs(x, aux2, aux1) else: return self.eager_outputs(x, aux2, aux1) def fuse_model(self) -> None: r"""Fuse conv/bn/relu modules in googlenet model Fuse conv+bn+relu/ conv+relu/conv+bn modules to prepare for quantization. Model is modified in place. Note that this operation does not change numerics and the model after modification is in floating point """ for m in self.modules(): if type(m) is QuantizableBasicConv2d: m.fuse_model() def googlenet( pretrained: bool = False, progress: bool = True, quantize: bool = False, **kwargs: Any, ) -> QuantizableGoogLeNet: r"""GoogLeNet (Inception v1) model architecture from `"Going Deeper with Convolutions" `_. Note that quantize = True returns a quantized model with 8 bit weights. Quantized models only support inference and run on CPUs. GPU inference is not yet supported Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr quantize (bool): If True, return a quantized version of the model aux_logits (bool): If True, adds two auxiliary branches that can improve training. Default: *False* when pretrained is True otherwise *True* transform_input (bool): If True, preprocesses the input according to the method with which it was trained on ImageNet. Default: *False* """ if pretrained: if "transform_input" not in kwargs: kwargs["transform_input"] = True if "aux_logits" not in kwargs: kwargs["aux_logits"] = False if kwargs["aux_logits"]: warnings.warn( "auxiliary heads in the pretrained googlenet model are NOT pretrained, so make sure to train them" ) original_aux_logits = kwargs["aux_logits"] kwargs["aux_logits"] = True kwargs["init_weights"] = False model = QuantizableGoogLeNet(**kwargs) _replace_relu(model) if quantize: # TODO use pretrained as a string to specify the backend backend = "fbgemm" quantize_model(model, backend) else: assert pretrained in [True, False] if pretrained: if quantize: model_url = quant_model_urls["googlenet_" + backend] else: model_url = model_urls["googlenet"] state_dict = load_state_dict_from_url(model_url, progress=progress) model.load_state_dict(state_dict) if not original_aux_logits: model.aux_logits = False model.aux1 = None # type: ignore[assignment] model.aux2 = None # type: ignore[assignment] return model