import os import torch import torch.utils.data as data class VisionDataset(data.Dataset): _repr_indent = 4 def __init__(self, root): if isinstance(root, torch._six.string_classes): root = os.path.expanduser(root) self.root = root def __getitem__(self, index): raise NotImplementedError def __len__(self): raise NotImplementedError def __repr__(self): head = "Dataset " + self.__class__.__name__ body = ["Number of datapoints: {}".format(self.__len__())] if self.root is not None: body.append("Root location: {}".format(self.root)) body += self.extra_repr().splitlines() if hasattr(self, 'transform') and self.transform is not None: body += self._format_transform_repr(self.transform, "Transforms: ") if hasattr(self, 'target_transform') and self.target_transform is not None: body += self._format_transform_repr(self.target_transform, "Target transforms: ") lines = [head] + [" " * self._repr_indent + line for line in body] return '\n'.join(lines) def _format_transform_repr(self, transform, head): lines = transform.__repr__().splitlines() return (["{}{}".format(head, lines[0])] + ["{}{}".format(" " * len(head), line) for line in lines[1:]]) def extra_repr(self): return ""