# Semantic segmentation reference training scripts This folder contains reference training scripts for semantic segmentation. They serve as a log of how to train specific models, as provide baseline training and evaluation scripts to quickly bootstrap research. All models have been trained on 8x V100 GPUs. ## fcn_resnet50 ``` python -m torch.distributed.launch --nproc_per_node=8 --use_env train.py --lr 0.02 --dataset coco -b 4 --model fcn_resnet50 --aux-loss ``` ## fcn_resnet101 ``` python -m torch.distributed.launch --nproc_per_node=8 --use_env train.py --lr 0.02 --dataset coco -b 4 --model fcn_resnet101 --aux-loss ``` ## deeplabv3_resnet50 ``` python -m torch.distributed.launch --nproc_per_node=8 --use_env train.py --lr 0.02 --dataset coco -b 4 --model deeplabv3_resnet50 --aux-loss ``` ## deeplabv3_resnet101 ``` python -m torch.distributed.launch --nproc_per_node=8 --use_env train.py --lr 0.02 --dataset coco -b 4 --model deeplabv3_resnet101 --aux-loss ```