from __future__ import annotations from typing import Any, Optional, Union import PIL.Image import torch from ._datapoint import Datapoint class Image(Datapoint): """[BETA] :class:`torch.Tensor` subclass for images. Args: data (tensor-like, PIL.Image.Image): Any data that can be turned into a tensor with :func:`torch.as_tensor` as well as PIL images. dtype (torch.dtype, optional): Desired data type of the bounding box. If omitted, will be inferred from ``data``. device (torch.device, optional): Desired device of the bounding box. If omitted and ``data`` is a :class:`torch.Tensor`, the device is taken from it. Otherwise, the bounding box is constructed on the CPU. requires_grad (bool, optional): Whether autograd should record operations on the bounding box. If omitted and ``data`` is a :class:`torch.Tensor`, the value is taken from it. Otherwise, defaults to ``False``. """ @classmethod def _wrap(cls, tensor: torch.Tensor) -> Image: image = tensor.as_subclass(cls) return image def __new__( cls, data: Any, *, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: Optional[bool] = None, ) -> Image: if isinstance(data, PIL.Image.Image): from torchvision.transforms.v2 import functional as F data = F.pil_to_tensor(data) tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) if tensor.ndim < 2: raise ValueError elif tensor.ndim == 2: tensor = tensor.unsqueeze(0) return cls._wrap(tensor) @classmethod def wrap_like(cls, other: Image, tensor: torch.Tensor) -> Image: return cls._wrap(tensor) def __repr__(self, *, tensor_contents: Any = None) -> str: # type: ignore[override] return self._make_repr() _ImageType = Union[torch.Tensor, PIL.Image.Image, Image] _ImageTypeJIT = torch.Tensor _TensorImageType = Union[torch.Tensor, Image] _TensorImageTypeJIT = torch.Tensor