# Image classification reference training scripts This folder contains reference training scripts for image classification. They serve as a log of how to train specific models, as provide baseline training and evaluation scripts to quickly bootstrap research. Except otherwise noted, all models have been trained on 8x V100 GPUs. ### ResNext-50 32x4d ``` python -m torch.distributed.launch --nproc_per_node=8 --use_env train.py\ --model resnext50_32x4d --epochs 100 ``` ### ResNext-101 32x8d On 8 nodes, each with 8 GPUs (for a total of 64 GPUS) ``` python -m torch.distributed.launch --nproc_per_node=8 --use_env train.py\ --model resnext101_32x8d --epochs 100 ``` ### MobileNetV2 ``` python -m torch.distributed.launch --nproc_per_node=8 --use_env train.py\ --model mobilenet_v2 --epochs 300 --lr 0.045 --wd 0.00004\ --lr-step-size 1 --lr-gamma 0.98 ```