name: Tests on Windows on: pull_request: push: branches: - nightly - main - release/* workflow_dispatch: jobs: unittests: strategy: matrix: python-version: - "3.8" - "3.9" - "3.10" - "3.11" runner: ["windows.4xlarge"] gpu-arch-type: ["cpu"] include: - python-version: "3.8" runner: windows.g5.4xlarge.nvidia.gpu gpu-arch-type: cuda gpu-arch-version: "11.7" fail-fast: false uses: pytorch/test-infra/.github/workflows/windows_job.yml@main with: repository: pytorch/vision runner: ${{ matrix.runner }} timeout: 120 script: | set -euxo pipefail export PYTHON_VERSION=${{ matrix.python-version }} export GPU_ARCH_TYPE=${{ matrix.gpu-arch-type }} export GPU_ARCH_VERSION=${{ matrix.gpu-arch-version }} # TODO: Port this to pytorch/test-infra/.github/workflows/windows_job.yml export PATH="/c/Jenkins/Miniconda3/Scripts:${PATH}" if [[ $GPU_ARCH_TYPE == 'cuda' ]]; then # TODO: This should be handled by the generic Windows job the same as its done by the generic Linux job export CUDA_HOME="/c/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v${{ matrix.gpu-arch-version }}" export CUDA_PATH="${CUDA_HOME}" export PATH="${CUDA_PATH}/bin:${PATH}" fi ./.github/scripts/unittest.sh