from __future__ import annotations from typing import Any, Optional, Union import torch from ._datapoint import Datapoint class Video(Datapoint): """[BETA] :class:`torch.Tensor` subclass for videos. Args: data (tensor-like): Any data that can be turned into a tensor with :func:`torch.as_tensor`. dtype (torch.dtype, optional): Desired data type of the bounding box. If omitted, will be inferred from ``data``. device (torch.device, optional): Desired device of the bounding box. If omitted and ``data`` is a :class:`torch.Tensor`, the device is taken from it. Otherwise, the bounding box is constructed on the CPU. requires_grad (bool, optional): Whether autograd should record operations on the bounding box. If omitted and ``data`` is a :class:`torch.Tensor`, the value is taken from it. Otherwise, defaults to ``False``. """ def __new__( cls, data: Any, *, dtype: Optional[torch.dtype] = None, device: Optional[Union[torch.device, str, int]] = None, requires_grad: Optional[bool] = None, ) -> Video: tensor = cls._to_tensor(data, dtype=dtype, device=device, requires_grad=requires_grad) if data.ndim < 4: raise ValueError return tensor.as_subclass(cls) def __repr__(self, *, tensor_contents: Any = None) -> str: # type: ignore[override] return self._make_repr() _VideoType = Union[torch.Tensor, Video] _VideoTypeJIT = torch.Tensor _TensorVideoType = Union[torch.Tensor, Video] _TensorVideoTypeJIT = torch.Tensor