import torch from torch import Tensor def _upcast(t: Tensor) -> Tensor: # Protects from numerical overflows in multiplications by upcasting to the equivalent higher type if t.dtype not in (torch.float32, torch.float64): return t.float() return t def generalized_box_iou_loss( boxes1: torch.Tensor, boxes2: torch.Tensor, reduction: str = "none", eps: float = 1e-7, ) -> torch.Tensor: """ Original implementation from https://github.com/facebookresearch/fvcore/blob/bfff2ef/fvcore/nn/giou_loss.py Gradient-friendly IoU loss with an additional penalty that is non-zero when the boxes do not overlap and scales with the size of their smallest enclosing box. This loss is symmetric, so the boxes1 and boxes2 arguments are interchangeable. Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with ``0 <= x1 < x2`` and ``0 <= y1 < y2``, and The two boxes should have the same dimensions. Args: boxes1 (Tensor[N, 4] or Tensor[4]): first set of boxes boxes2 (Tensor[N, 4] or Tensor[4]): second set of boxes reduction (string, optional): Specifies the reduction to apply to the output: ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: No reduction will be applied to the output. ``'mean'``: The output will be averaged. ``'sum'``: The output will be summed. Default: ``'none'`` eps (float, optional): small number to prevent division by zero. Default: 1e-7 Reference: Hamid Rezatofighi et. al: Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression: https://arxiv.org/abs/1902.09630 """ boxes1 = _upcast(boxes1) boxes2 = _upcast(boxes2) x1, y1, x2, y2 = boxes1.unbind(dim=-1) x1g, y1g, x2g, y2g = boxes2.unbind(dim=-1) # Intersection keypoints xkis1 = torch.max(x1, x1g) ykis1 = torch.max(y1, y1g) xkis2 = torch.min(x2, x2g) ykis2 = torch.min(y2, y2g) intsctk = torch.zeros_like(x1) mask = (ykis2 > ykis1) & (xkis2 > xkis1) intsctk[mask] = (xkis2[mask] - xkis1[mask]) * (ykis2[mask] - ykis1[mask]) unionk = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g) - intsctk iouk = intsctk / (unionk + eps) # smallest enclosing box xc1 = torch.min(x1, x1g) yc1 = torch.min(y1, y1g) xc2 = torch.max(x2, x2g) yc2 = torch.max(y2, y2g) area_c = (xc2 - xc1) * (yc2 - yc1) miouk = iouk - ((area_c - unionk) / (area_c + eps)) loss = 1 - miouk if reduction == "mean": loss = loss.mean() if loss.numel() > 0 else 0.0 * loss.sum() elif reduction == "sum": loss = loss.sum() return loss