import torch from torch import nn from torch.autograd import Function from torch.autograd.function import once_differentiable from torch.nn.modules.utils import _pair from torchvision.extension import _lazy_import from ._utils import convert_boxes_to_roi_format class _RoIPoolFunction(Function): @staticmethod def forward(ctx, input, rois, output_size, spatial_scale): ctx.output_size = _pair(output_size) ctx.spatial_scale = spatial_scale ctx.input_shape = input.size() _C = _lazy_import() output, argmax = _C.roi_pool_forward( input, rois, spatial_scale, output_size[0], output_size[1]) ctx.save_for_backward(rois, argmax) return output @staticmethod @once_differentiable def backward(ctx, grad_output): rois, argmax = ctx.saved_tensors output_size = ctx.output_size spatial_scale = ctx.spatial_scale bs, ch, h, w = ctx.input_shape _C = _lazy_import() grad_input = _C.roi_pool_backward( grad_output, rois, argmax, spatial_scale, output_size[0], output_size[1], bs, ch, h, w) return grad_input, None, None, None def roi_pool(input, boxes, output_size, spatial_scale=1.0): """ Performs Region of Interest (RoI) Pool operator described in Fast R-CNN Arguments: input (Tensor[N, C, H, W]): input tensor boxes (Tensor[K, 5] or List[Tensor[L, 4]]): the box coordinates in (x1, y1, x2, y2) format where the regions will be taken from. If a single Tensor is passed, then the first column should contain the batch index. If a list of Tensors is passed, then each Tensor will correspond to the boxes for an element i in a batch output_size (int or Tuple[int, int]): the size of the output after the cropping is performed, as (height, width) spatial_scale (float): a scaling factor that maps the input coordinates to the box coordinates. Default: 1.0 Returns: output (Tensor[K, C, output_size[0], output_size[1]]) """ rois = boxes if not isinstance(rois, torch.Tensor): rois = convert_boxes_to_roi_format(rois) # TODO: Change this to support backwards, which we # do not currently support when JIT tracing. if torch._C._get_tracing_state(): _lazy_import() output, _ = torch.ops.torchvision.roi_pool(input, rois, spatial_scale, output_size[0], output_size[1]) return output return _RoIPoolFunction.apply(input, rois, output_size, spatial_scale) class RoIPool(nn.Module): """ See roi_pool """ def __init__(self, output_size, spatial_scale): super(RoIPool, self).__init__() self.output_size = output_size self.spatial_scale = spatial_scale def forward(self, input, rois): return roi_pool(input, rois, self.output_size, self.spatial_scale) def __repr__(self): tmpstr = self.__class__.__name__ + '(' tmpstr += 'output_size=' + str(self.output_size) tmpstr += ', spatial_scale=' + str(self.spatial_scale) tmpstr += ')' return tmpstr