#include "ps_roi_align.h" #include #include namespace vision { namespace ops { std::tuple ps_roi_align( const at::Tensor& input, const at::Tensor& rois, double spatial_scale, int64_t pooled_height, int64_t pooled_width, int64_t sampling_ratio) { static auto op = c10::Dispatcher::singleton() .findSchemaOrThrow("torchvision::ps_roi_align", "") .typed(); return op.call( input, rois, spatial_scale, pooled_height, pooled_width, sampling_ratio); } at::Tensor _ps_roi_align_backward( const at::Tensor& grad, const at::Tensor& rois, const at::Tensor& channel_mapping, double spatial_scale, int64_t pooled_height, int64_t pooled_width, int64_t sampling_ratio, int64_t batch_size, int64_t channels, int64_t height, int64_t width) { static auto op = c10::Dispatcher::singleton() .findSchemaOrThrow("torchvision::_ps_roi_align_backward", "") .typed(); return op.call( grad, rois, channel_mapping, spatial_scale, pooled_height, pooled_width, sampling_ratio, batch_size, channels, height, width); } TORCH_LIBRARY_FRAGMENT(torchvision, m) { m.def( "ps_roi_align(Tensor input, Tensor rois, float spatial_scale, int pooled_height, int pooled_width, int sampling_ratio) -> (Tensor, Tensor)"); m.def( "_ps_roi_align_backward(Tensor grad, Tensor rois, Tensor channel_mapping, float spatial_scale, int pooled_height, int pooled_width, int sampling_ratio, int batch_size, int channels, int height, int width) -> Tensor"); } namespace { class PSROIAlignFunction : public torch::autograd::Function { public: static torch::autograd::variable_list forward( torch::autograd::AutogradContext* ctx, const torch::autograd::Variable& input, const torch::autograd::Variable& rois, double spatial_scale, int64_t pooled_height, int64_t pooled_width, int64_t sampling_ratio) { ctx->saved_data["spatial_scale"] = spatial_scale; ctx->saved_data["pooled_height"] = pooled_height; ctx->saved_data["pooled_width"] = pooled_width; ctx->saved_data["sampling_ratio"] = sampling_ratio; ctx->saved_data["input_shape"] = input.sizes(); at::AutoNonVariableTypeMode g; auto result = ps_roi_align( input, rois, spatial_scale, pooled_height, pooled_width, sampling_ratio); auto output = std::get<0>(result); auto channel_mapping = std::get<1>(result); ctx->save_for_backward({rois, channel_mapping}); ctx->mark_non_differentiable({channel_mapping}); return {output, channel_mapping}; } static torch::autograd::variable_list backward( torch::autograd::AutogradContext* ctx, const torch::autograd::variable_list& grad_output) { // Use data saved in forward auto saved = ctx->get_saved_variables(); auto rois = saved[0]; auto channel_mapping = saved[1]; auto input_shape = ctx->saved_data["input_shape"].toIntList(); auto grad_in = _ps_roi_align_backward( grad_output[0], rois, channel_mapping, ctx->saved_data["spatial_scale"].toDouble(), ctx->saved_data["pooled_height"].toInt(), ctx->saved_data["pooled_width"].toInt(), ctx->saved_data["sampling_ratio"].toInt(), input_shape[0], input_shape[1], input_shape[2], input_shape[3]); return {grad_in, torch::autograd::Variable(), torch::autograd::Variable(), torch::autograd::Variable(), torch::autograd::Variable(), torch::autograd::Variable()}; } }; // TODO: There should be an easier way to do this class PSROIAlignBackwardFunction : public torch::autograd::Function { public: static torch::autograd::variable_list forward( torch::autograd::AutogradContext* ctx, const torch::autograd::Variable& grad, const torch::autograd::Variable& rois, const torch::autograd::Variable& channel_mapping, double spatial_scale, int64_t pooled_height, int64_t pooled_width, int64_t sampling_ratio, int64_t batch_size, int64_t channels, int64_t height, int64_t width) { at::AutoNonVariableTypeMode g; auto grad_in = _ps_roi_align_backward( grad, rois, channel_mapping, spatial_scale, pooled_height, pooled_width, sampling_ratio, batch_size, channels, height, width); return {grad_in}; } static torch::autograd::variable_list backward( torch::autograd::AutogradContext* ctx, const torch::autograd::variable_list& grad_output) { TORCH_CHECK(0, "double backwards on ps_roi_align not supported"); } }; std::tuple ps_roi_align_autograd( const at::Tensor& input, const at::Tensor& rois, double spatial_scale, int64_t pooled_height, int64_t pooled_width, int64_t sampling_ratio) { auto result = PSROIAlignFunction::apply( input, rois, spatial_scale, pooled_height, pooled_width, sampling_ratio); return std::make_tuple(result[0], result[1]); } at::Tensor ps_roi_align_backward_autograd( const at::Tensor& grad, const at::Tensor& rois, const at::Tensor& channel_mapping, double spatial_scale, int64_t pooled_height, int64_t pooled_width, int64_t sampling_ratio, int64_t batch_size, int64_t channels, int64_t height, int64_t width) { return PSROIAlignBackwardFunction::apply( grad, rois, channel_mapping, spatial_scale, pooled_height, pooled_width, sampling_ratio, batch_size, channels, height, width)[0]; } } // namespace TORCH_LIBRARY_IMPL(torchvision, Autograd, m) { m.impl("ps_roi_align", ps_roi_align_autograd); m.impl("_ps_roi_align_backward", ps_roi_align_backward_autograd); } } // namespace ops } // namespace vision