import functools import torch import torch.nn as nn __all__ = ['ShuffleNetV2', 'shufflenetv2', 'shufflenetv2_x0_5', 'shufflenetv2_x1_0', 'shufflenetv2_x1_5', 'shufflenetv2_x2_0'] model_urls = { 'shufflenetv2_x0.5': 'https://github.com/barrh/Shufflenet-v2-Pytorch/releases/download/v0.1.0/shufflenetv2_x0.5-f707e7126e.pt', 'shufflenetv2_x1.0': 'https://github.com/barrh/Shufflenet-v2-Pytorch/releases/download/v0.1.0/shufflenetv2_x1-5666bf0f80.pt', 'shufflenetv2_x1.5': None, 'shufflenetv2_x2.0': None, } def channel_shuffle(x, groups): batchsize, num_channels, height, width = x.data.size() channels_per_group = num_channels // groups # reshape x = x.view(batchsize, groups, channels_per_group, height, width) x = torch.transpose(x, 1, 2).contiguous() # flatten x = x.view(batchsize, -1, height, width) return x class InvertedResidual(nn.Module): def __init__(self, inp, oup, stride): super(InvertedResidual, self).__init__() if not (1 <= stride <= 3): raise ValueError('illegal stride value') self.stride = stride branch_features = oup // 2 assert (self.stride != 1) or (inp == branch_features << 1) pw_conv11 = functools.partial(nn.Conv2d, kernel_size=1, stride=1, padding=0, bias=False) dw_conv33 = functools.partial(self.depthwise_conv, kernel_size=3, stride=self.stride, padding=1) if self.stride > 1: self.branch1 = nn.Sequential( dw_conv33(inp, inp), nn.BatchNorm2d(inp), pw_conv11(inp, branch_features), nn.BatchNorm2d(branch_features), nn.ReLU(inplace=True), ) self.branch2 = nn.Sequential( pw_conv11(inp if (self.stride > 1) else branch_features, branch_features), nn.BatchNorm2d(branch_features), nn.ReLU(inplace=True), dw_conv33(branch_features, branch_features), nn.BatchNorm2d(branch_features), pw_conv11(branch_features, branch_features), nn.BatchNorm2d(branch_features), nn.ReLU(inplace=True), ) @staticmethod def depthwise_conv(i, o, kernel_size, stride=1, padding=0, bias=False): return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i) def forward(self, x): if self.stride == 1: x1, x2 = x.chunk(2, dim=1) out = torch.cat((x1, self.branch2(x2)), dim=1) else: out = torch.cat((self.branch1(x), self.branch2(x)), dim=1) out = channel_shuffle(out, 2) return out class ShuffleNetV2(nn.Module): def __init__(self, num_classes=1000, input_size=224, width_mult=1): super(ShuffleNetV2, self).__init__() try: self.stage_out_channels = self._getStages(float(width_mult)) except KeyError: raise ValueError('width_mult {} is not supported'.format(width_mult)) input_channels = 3 output_channels = self.stage_out_channels[0] self.conv1 = nn.Sequential( nn.Conv2d(input_channels, output_channels, 3, 2, 1, bias=False), nn.BatchNorm2d(output_channels), nn.ReLU(inplace=True), ) input_channels = output_channels self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) stage_names = ['stage{}'.format(i) for i in [2, 3, 4]] stage_repeats = [4, 8, 4] for name, repeats, output_channels in zip( stage_names, stage_repeats, self.stage_out_channels[1:]): seq = [InvertedResidual(input_channels, output_channels, 2)] for i in range(repeats - 1): seq.append(InvertedResidual(output_channels, output_channels, 1)) setattr(self, name, nn.Sequential(*seq)) input_channels = output_channels output_channels = self.stage_out_channels[-1] self.conv5 = nn.Sequential( nn.Conv2d(input_channels, output_channels, 1, 1, 0, bias=False), nn.BatchNorm2d(output_channels), nn.ReLU(inplace=True), ) self.fc = nn.Linear(output_channels, num_classes) def forward(self, x): x = self.conv1(x) x = self.maxpool(x) x = self.stage2(x) x = self.stage3(x) x = self.stage4(x) x = self.conv5(x) x = x.mean([2, 3]) # globalpool x = self.fc(x) return x @staticmethod def _getStages(mult): stages = { '0.5': [24, 48, 96, 192, 1024], '1.0': [24, 116, 232, 464, 1024], '1.5': [24, 176, 352, 704, 1024], '2.0': [24, 244, 488, 976, 2048], } return stages[str(mult)] def shufflenetv2(pretrained=False, num_classes=1000, input_size=224, width_mult=1, **kwargs): model = ShuffleNetV2(num_classes=num_classes, input_size=input_size, width_mult=width_mult) if pretrained: # change width_mult to float if isinstance(width_mult, int): width_mult = float(width_mult) model_type = ('_'.join([ShuffleNetV2.__name__, 'x' + str(width_mult)])) try: model_url = model_urls[model_type.lower()] except KeyError: raise ValueError('model {} is not support'.format(model_type)) if model_url is None: raise NotImplementedError('pretrained {} is not supported'.format(model_type)) model.load_state_dict(torch.utils.model_zoo.load_url(model_url)) return model def shufflenetv2_x0_5(pretrained=False, num_classes=1000, input_size=224, **kwargs): return shufflenetv2(pretrained, num_classes, input_size, 0.5) def shufflenetv2_x1_0(pretrained=False, num_classes=1000, input_size=224, **kwargs): return shufflenetv2(pretrained, num_classes, input_size, 1) def shufflenetv2_x1_5(pretrained=False, num_classes=1000, input_size=224, **kwargs): return shufflenetv2(pretrained, num_classes, input_size, 1.5) def shufflenetv2_x2_0(pretrained=False, num_classes=1000, input_size=224, **kwargs): return shufflenetv2(pretrained, num_classes, input_size, 2)