import torch.utils.data as data from PIL import Image import os import os.path import six import string import sys if sys.version_info[0] == 2: import cPickle as pickle else: import pickle class LSUNClass(data.Dataset): def __init__(self, root, transform=None, target_transform=None): import lmdb self.root = os.path.expanduser(root) self.transform = transform self.target_transform = target_transform self.env = lmdb.open(root, max_readers=1, readonly=True, lock=False, readahead=False, meminit=False) with self.env.begin(write=False) as txn: self.length = txn.stat()['entries'] cache_file = '_cache_' + root.replace('/', '_') if os.path.isfile(cache_file): self.keys = pickle.load(open(cache_file, "rb")) else: with self.env.begin(write=False) as txn: self.keys = [key for key, _ in txn.cursor()] pickle.dump(self.keys, open(cache_file, "wb")) def __getitem__(self, index): img, target = None, None env = self.env with env.begin(write=False) as txn: imgbuf = txn.get(self.keys[index]) buf = six.BytesIO() buf.write(imgbuf) buf.seek(0) img = Image.open(buf).convert('RGB') if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self): return self.length def __repr__(self): return self.__class__.__name__ + ' (' + self.db_path + ')' class LSUN(data.Dataset): """ `LSUN `_ dataset. Args: root (string): Root directory for the database files. classes (string or list): One of {'train', 'val', 'test'} or a list of categories to load. e,g. ['bedroom_train', 'church_train']. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. """ def __init__(self, root, classes='train', transform=None, target_transform=None): categories = ['bedroom', 'bridge', 'church_outdoor', 'classroom', 'conference_room', 'dining_room', 'kitchen', 'living_room', 'restaurant', 'tower'] dset_opts = ['train', 'val', 'test'] self.root = os.path.expanduser(root) self.transform = transform self.target_transform = target_transform if type(classes) == str and classes in dset_opts: if classes == 'test': classes = [classes] else: classes = [c + '_' + classes for c in categories] if type(classes) == list: for c in classes: c_short = c.split('_') c_short.pop(len(c_short) - 1) c_short = '_'.join(c_short) if c_short not in categories: raise(ValueError('Unknown LSUN class: ' + c_short + '.' 'Options are: ' + str(categories))) c_short = c.split('_') c_short = c_short.pop(len(c_short) - 1) if c_short not in dset_opts: raise(ValueError('Unknown postfix: ' + c_short + '.' 'Options are: ' + str(dset_opts))) else: raise(ValueError('Unknown option for classes')) self.classes = classes # for each class, create an LSUNClassDataset self.dbs = [] for c in self.classes: self.dbs.append(LSUNClass( root=root + '/' + c + '_lmdb', transform=transform)) self.indices = [] count = 0 for db in self.dbs: count += len(db) self.indices.append(count) self.length = count def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: Tuple (image, target) where target is the index of the target category. """ target = 0 sub = 0 for ind in self.indices: if index < ind: break target += 1 sub = ind db = self.dbs[target] index = index - sub if self.target_transform is not None: target = self.target_transform(target) img, _ = db[index] return img, target def __len__(self): return self.length def __repr__(self): fmt_str = 'Dataset ' + self.__class__.__name__ + '\n' fmt_str += ' Number of datapoints: {}\n'.format(self.__len__()) fmt_str += ' Root Location: {}\n'.format(self.root) fmt_str += ' Classes: {}\n'.format(self.classes) tmp = ' Transforms (if any): ' fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp))) tmp = ' Target Transforms (if any): ' fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp))) return fmt_str