import csv import os from typing import Any, Callable, Optional, Tuple import PIL from .folder import make_dataset from .utils import download_and_extract_archive from .vision import VisionDataset class GTSRB(VisionDataset): """`German Traffic Sign Recognition Benchmark (GTSRB) `_ Dataset. Args: root (string): Root directory of the dataset. train (bool, optional): If True, creates dataset from training set, otherwise creates from test set. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop``. target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ # Ground Truth for the test set _gt_url = "https://sid.erda.dk/public/archives/daaeac0d7ce1152aea9b61d9f1e19370/GTSRB_Final_Test_GT.zip" _gt_csv = "GT-final_test.csv" _gt_md5 = "fe31e9c9270bbcd7b84b7f21a9d9d9e5" # URLs for the test and train set _urls = ( "https://sid.erda.dk/public/archives/daaeac0d7ce1152aea9b61d9f1e19370/GTSRB_Final_Test_Images.zip", "https://sid.erda.dk/public/archives/daaeac0d7ce1152aea9b61d9f1e19370/GTSRB-Training_fixed.zip", ) _md5s = ("c7e4e6327067d32654124b0fe9e82185", "513f3c79a4c5141765e10e952eaa2478") def __init__( self, root: str, train: bool = True, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self.root = os.path.expanduser(root) self.train = train self._base_folder = os.path.join(self.root, type(self).__name__) self._target_folder = os.path.join(self._base_folder, "Training" if self.train else "Final_Test/Images") if download: self.download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") if train: samples = make_dataset(self._target_folder, extensions=(".ppm",)) else: with open(os.path.join(self._base_folder, self._gt_csv)) as csv_file: samples = [ (os.path.join(self._target_folder, row["Filename"]), int(row["ClassId"])) for row in csv.DictReader(csv_file, delimiter=";", skipinitialspace=True) ] self._samples = samples self.transform = transform self.target_transform = target_transform def __len__(self) -> int: return len(self._samples) def __getitem__(self, index: int) -> Tuple[Any, Any]: path, target = self._samples[index] sample = PIL.Image.open(path).convert("RGB") if self.transform is not None: sample = self.transform(sample) if self.target_transform is not None: target = self.target_transform(target) return sample, target def _check_exists(self) -> bool: return os.path.exists(self._target_folder) and os.path.isdir(self._target_folder) def download(self) -> None: if self._check_exists(): return download_and_extract_archive(self._urls[self.train], download_root=self.root, md5=self._md5s[self.train]) if not self.train: # Download Ground Truth for the test set download_and_extract_archive( self._gt_url, download_root=self.root, extract_root=self._base_folder, md5=self._gt_md5 )