import os import io import glob import unittest import sys import torch import torchvision from PIL import Image from torchvision.io.image import ( read_png, decode_png, read_jpeg, decode_jpeg, encode_jpeg, write_jpeg, decode_image, _read_file) import numpy as np IMAGE_ROOT = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets") IMAGE_DIR = os.path.join(IMAGE_ROOT, "fakedata", "imagefolder") DAMAGED_JPEG = os.path.join(IMAGE_ROOT, 'damaged_jpeg') def get_images(directory, img_ext): assert os.path.isdir(directory) for root, _, files in os.walk(directory): if os.path.basename(root) in {'damaged_jpeg', 'jpeg_write'}: continue for fl in files: _, ext = os.path.splitext(fl) if ext == img_ext: yield os.path.join(root, fl) class ImageTester(unittest.TestCase): def test_read_jpeg(self): for img_path in get_images(IMAGE_ROOT, ".jpg"): img_pil = torch.load(img_path.replace('jpg', 'pth')) img_pil = img_pil.permute(2, 0, 1) img_ljpeg = read_jpeg(img_path) self.assertTrue(img_ljpeg.equal(img_pil)) def test_decode_jpeg(self): for img_path in get_images(IMAGE_ROOT, ".jpg"): img_pil = torch.load(img_path.replace('jpg', 'pth')) img_pil = img_pil.permute(2, 0, 1) size = os.path.getsize(img_path) img_ljpeg = decode_jpeg(torch.from_file(img_path, dtype=torch.uint8, size=size)) self.assertTrue(img_ljpeg.equal(img_pil)) with self.assertRaisesRegex(RuntimeError, "Expected a non empty 1-dimensional tensor"): decode_jpeg(torch.empty((100, 1), dtype=torch.uint8)) with self.assertRaisesRegex(RuntimeError, "Expected a torch.uint8 tensor"): decode_jpeg(torch.empty((100, ), dtype=torch.float16)) with self.assertRaises(RuntimeError): decode_jpeg(torch.empty((100), dtype=torch.uint8)) def test_damaged_images(self): # Test image with bad Huffman encoding (should not raise) bad_huff = os.path.join(DAMAGED_JPEG, 'bad_huffman.jpg') try: _ = read_jpeg(bad_huff) except RuntimeError: self.assertTrue(False) # Truncated images should raise an exception truncated_images = glob.glob( os.path.join(DAMAGED_JPEG, 'corrupt*.jpg')) for image_path in truncated_images: with self.assertRaises(RuntimeError): read_jpeg(image_path) def test_encode_jpeg(self): for img_path in get_images(IMAGE_ROOT, ".jpg"): dirname = os.path.dirname(img_path) filename, _ = os.path.splitext(os.path.basename(img_path)) write_folder = os.path.join(dirname, 'jpeg_write') expected_file = os.path.join( write_folder, '{0}_pil.jpg'.format(filename)) img = read_jpeg(img_path) with open(expected_file, 'rb') as f: pil_bytes = f.read() pil_bytes = torch.as_tensor(list(pil_bytes), dtype=torch.uint8) for src_img in [img, img.contiguous()]: # PIL sets jpeg quality to 75 by default jpeg_bytes = encode_jpeg(src_img, quality=75) self.assertTrue(jpeg_bytes.equal(pil_bytes)) with self.assertRaisesRegex( RuntimeError, "Input tensor dtype should be uint8"): encode_jpeg(torch.empty((3, 100, 100), dtype=torch.float32)) with self.assertRaisesRegex( ValueError, "Image quality should be a positive number " "between 1 and 100"): encode_jpeg(torch.empty((3, 100, 100), dtype=torch.uint8), quality=-1) with self.assertRaisesRegex( ValueError, "Image quality should be a positive number " "between 1 and 100"): encode_jpeg(torch.empty((3, 100, 100), dtype=torch.uint8), quality=101) with self.assertRaisesRegex( RuntimeError, "The number of channels should be 1 or 3, got: 5"): encode_jpeg(torch.empty((5, 100, 100), dtype=torch.uint8)) with self.assertRaisesRegex( RuntimeError, "Input data should be a 3-dimensional tensor"): encode_jpeg(torch.empty((1, 3, 100, 100), dtype=torch.uint8)) with self.assertRaisesRegex( RuntimeError, "Input data should be a 3-dimensional tensor"): encode_jpeg(torch.empty((100, 100), dtype=torch.uint8)) def test_write_jpeg(self): for img_path in get_images(IMAGE_ROOT, ".jpg"): img = read_jpeg(img_path) basedir = os.path.dirname(img_path) filename, _ = os.path.splitext(os.path.basename(img_path)) torch_jpeg = os.path.join( basedir, '{0}_torch.jpg'.format(filename)) pil_jpeg = os.path.join( basedir, 'jpeg_write', '{0}_pil.jpg'.format(filename)) write_jpeg(img, torch_jpeg, quality=75) with open(torch_jpeg, 'rb') as f: torch_bytes = f.read() with open(pil_jpeg, 'rb') as f: pil_bytes = f.read() os.remove(torch_jpeg) self.assertEqual(torch_bytes, pil_bytes) def test_read_png(self): # Check across .png for img_path in get_images(IMAGE_DIR, ".png"): img_pil = torch.from_numpy(np.array(Image.open(img_path))) img_pil = img_pil.permute(2, 0, 1) img_lpng = read_png(img_path) self.assertTrue(img_lpng.equal(img_pil)) def test_decode_png(self): for img_path in get_images(IMAGE_DIR, ".png"): img_pil = torch.from_numpy(np.array(Image.open(img_path))) img_pil = img_pil.permute(2, 0, 1) size = os.path.getsize(img_path) img_lpng = decode_png(torch.from_file(img_path, dtype=torch.uint8, size=size)) self.assertTrue(img_lpng.equal(img_pil)) with self.assertRaises(RuntimeError): decode_png(torch.empty((), dtype=torch.uint8)) with self.assertRaises(RuntimeError): decode_png(torch.randint(3, 5, (300,), dtype=torch.uint8)) def test_decode_image(self): for img_path in get_images(IMAGE_ROOT, ".jpg"): img_pil = torch.load(img_path.replace('jpg', 'pth')) img_pil = img_pil.permute(2, 0, 1) img_ljpeg = decode_image(_read_file(img_path)) self.assertTrue(img_ljpeg.equal(img_pil)) for img_path in get_images(IMAGE_DIR, ".png"): img_pil = torch.from_numpy(np.array(Image.open(img_path))) img_pil = img_pil.permute(2, 0, 1) img_lpng = decode_image(_read_file(img_path)) self.assertTrue(img_lpng.equal(img_pil)) if __name__ == '__main__': unittest.main()