import sys from common_utils import TestCase, map_nested_tensor_object, freeze_rng_state, set_rng_seed, IN_CIRCLE_CI from collections import OrderedDict from itertools import product import functools import operator import torch import torch.nn as nn from torchvision import models import unittest import warnings import pytest def get_available_classification_models(): # TODO add a registration mechanism to torchvision.models return [k for k, v in models.__dict__.items() if callable(v) and k[0].lower() == k[0] and k[0] != "_"] def get_available_segmentation_models(): # TODO add a registration mechanism to torchvision.models return [k for k, v in models.segmentation.__dict__.items() if callable(v) and k[0].lower() == k[0] and k[0] != "_"] def get_available_detection_models(): # TODO add a registration mechanism to torchvision.models return [k for k, v in models.detection.__dict__.items() if callable(v) and k[0].lower() == k[0] and k[0] != "_"] def get_available_video_models(): # TODO add a registration mechanism to torchvision.models return [k for k, v in models.video.__dict__.items() if callable(v) and k[0].lower() == k[0] and k[0] != "_"] # If 'unwrapper' is provided it will be called with the script model outputs # before they are compared to the eager model outputs. This is useful if the # model outputs are different between TorchScript / Eager mode script_model_unwrapper = { 'googlenet': lambda x: x.logits, 'inception_v3': lambda x: x.logits, "fasterrcnn_resnet50_fpn": lambda x: x[1], "fasterrcnn_mobilenet_v3_large_fpn": lambda x: x[1], "fasterrcnn_mobilenet_v3_large_320_fpn": lambda x: x[1], "maskrcnn_resnet50_fpn": lambda x: x[1], "keypointrcnn_resnet50_fpn": lambda x: x[1], "retinanet_resnet50_fpn": lambda x: x[1], "ssd300_vgg16": lambda x: x[1], "ssdlite320_mobilenet_v3_large": lambda x: x[1], } # The following models exhibit flaky numerics under autocast in _test_*_model harnesses. # This may be caused by the harness environment (e.g. num classes, input initialization # via torch.rand), and does not prove autocast is unsuitable when training with real data # (autocast has been used successfully with real data for some of these models). # TODO: investigate why autocast numerics are flaky in the harnesses. # # For the following models, _test_*_model harnesses skip numerical checks on outputs when # trying autocast. However, they still try an autocasted forward pass, so they still ensure # autocast coverage suffices to prevent dtype errors in each model. autocast_flaky_numerics = ( "inception_v3", "resnet101", "resnet152", "wide_resnet101_2", "deeplabv3_resnet50", "deeplabv3_resnet101", "deeplabv3_mobilenet_v3_large", "fcn_resnet50", "fcn_resnet101", "lraspp_mobilenet_v3_large", "maskrcnn_resnet50_fpn", ) class ModelTester(TestCase): def _test_classification_model(self, name, input_shape, dev): set_rng_seed(0) # passing num_class equal to a number other than 1000 helps in making the test # more enforcing in nature model = models.__dict__[name](num_classes=50) model.eval().to(device=dev) # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests x = torch.rand(input_shape).to(device=dev) out = model(x) self.assertExpected(out.cpu(), name, prec=0.1) self.assertEqual(out.shape[-1], 50) self.check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None)) if dev == torch.device("cuda"): with torch.cuda.amp.autocast(): out = model(x) # See autocast_flaky_numerics comment at top of file. if name not in autocast_flaky_numerics: self.assertExpected(out.cpu(), name, prec=0.1) self.assertEqual(out.shape[-1], 50) def _test_segmentation_model(self, name, dev): set_rng_seed(0) # passing num_classes equal to a number other than 21 helps in making the test's # expected file size smaller model = models.segmentation.__dict__[name](num_classes=10, pretrained_backbone=False) model.eval().to(device=dev) input_shape = (1, 3, 32, 32) # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests x = torch.rand(input_shape).to(device=dev) out = model(x)["out"] def check_out(out): prec = 0.01 try: # We first try to assert the entire output if possible. This is not # only the best way to assert results but also handles the cases # where we need to create a new expected result. self.assertExpected(out.cpu(), name, prec=prec) except AssertionError: # Unfortunately some segmentation models are flaky with autocast # so instead of validating the probability scores, check that the class # predictions match. expected_file = self._get_expected_file(name) expected = torch.load(expected_file) torch.testing.assert_close(out.argmax(dim=1), expected.argmax(dim=1), rtol=prec, atol=prec) return False # Partial validation performed return True # Full validation performed full_validation = check_out(out) self.check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None)) if dev == torch.device("cuda"): with torch.cuda.amp.autocast(): out = model(x)["out"] # See autocast_flaky_numerics comment at top of file. if name not in autocast_flaky_numerics: full_validation &= check_out(out) if not full_validation: msg = "The output of {} could only be partially validated. " \ "This is likely due to unit-test flakiness, but you may " \ "want to do additional manual checks if you made " \ "significant changes to the codebase.".format(self._testMethodName) warnings.warn(msg, RuntimeWarning) raise unittest.SkipTest(msg) def _test_detection_model(self, name, dev): set_rng_seed(0) kwargs = {} if "retinanet" in name: # Reduce the default threshold to ensure the returned boxes are not empty. kwargs["score_thresh"] = 0.01 elif "fasterrcnn_mobilenet_v3_large" in name: kwargs["box_score_thresh"] = 0.02076 if "fasterrcnn_mobilenet_v3_large_320_fpn" in name: kwargs["rpn_pre_nms_top_n_test"] = 1000 kwargs["rpn_post_nms_top_n_test"] = 1000 model = models.detection.__dict__[name](num_classes=50, pretrained_backbone=False, **kwargs) model.eval().to(device=dev) input_shape = (3, 300, 300) # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests x = torch.rand(input_shape).to(device=dev) model_input = [x] out = model(model_input) self.assertIs(model_input[0], x) def check_out(out): self.assertEqual(len(out), 1) def compact(tensor): size = tensor.size() elements_per_sample = functools.reduce(operator.mul, size[1:], 1) if elements_per_sample > 30: return compute_mean_std(tensor) else: return subsample_tensor(tensor) def subsample_tensor(tensor): num_elems = tensor.size(0) num_samples = 20 if num_elems <= num_samples: return tensor ith_index = num_elems // num_samples return tensor[ith_index - 1::ith_index] def compute_mean_std(tensor): # can't compute mean of integral tensor tensor = tensor.to(torch.double) mean = torch.mean(tensor) std = torch.std(tensor) return {"mean": mean, "std": std} output = map_nested_tensor_object(out, tensor_map_fn=compact) prec = 0.01 try: # We first try to assert the entire output if possible. This is not # only the best way to assert results but also handles the cases # where we need to create a new expected result. self.assertExpected(output, name, prec=prec) except AssertionError: # Unfortunately detection models are flaky due to the unstable sort # in NMS. If matching across all outputs fails, use the same approach # as in NMSTester.test_nms_cuda to see if this is caused by duplicate # scores. expected_file = self._get_expected_file(name) expected = torch.load(expected_file) torch.testing.assert_close(output[0]["scores"], expected[0]["scores"], rtol=prec, atol=prec, check_device=False, check_dtype=False) # Note: Fmassa proposed turning off NMS by adapting the threshold # and then using the Hungarian algorithm as in DETR to find the # best match between output and expected boxes and eliminate some # of the flakiness. Worth exploring. return False # Partial validation performed return True # Full validation performed full_validation = check_out(out) self.check_jit_scriptable(model, ([x],), unwrapper=script_model_unwrapper.get(name, None)) if dev == torch.device("cuda"): with torch.cuda.amp.autocast(): out = model(model_input) # See autocast_flaky_numerics comment at top of file. if name not in autocast_flaky_numerics: full_validation &= check_out(out) if not full_validation: msg = "The output of {} could only be partially validated. " \ "This is likely due to unit-test flakiness, but you may " \ "want to do additional manual checks if you made " \ "significant changes to the codebase.".format(self._testMethodName) warnings.warn(msg, RuntimeWarning) raise unittest.SkipTest(msg) def _test_detection_model_validation(self, name): set_rng_seed(0) model = models.detection.__dict__[name](num_classes=50, pretrained_backbone=False) input_shape = (3, 300, 300) x = [torch.rand(input_shape)] # validate that targets are present in training self.assertRaises(ValueError, model, x) # validate type targets = [{'boxes': 0.}] self.assertRaises(ValueError, model, x, targets=targets) # validate boxes shape for boxes in (torch.rand((4,)), torch.rand((1, 5))): targets = [{'boxes': boxes}] self.assertRaises(ValueError, model, x, targets=targets) # validate that no degenerate boxes are present boxes = torch.tensor([[1, 3, 1, 4], [2, 4, 3, 4]]) targets = [{'boxes': boxes}] self.assertRaises(ValueError, model, x, targets=targets) def _test_video_model(self, name, dev): # the default input shape is # bs * num_channels * clip_len * h *w input_shape = (1, 3, 4, 112, 112) # test both basicblock and Bottleneck model = models.video.__dict__[name](num_classes=50) model.eval().to(device=dev) # RNG always on CPU, to ensure x in cuda tests is bitwise identical to x in cpu tests x = torch.rand(input_shape).to(device=dev) out = model(x) self.check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None)) self.assertEqual(out.shape[-1], 50) if dev == torch.device("cuda"): with torch.cuda.amp.autocast(): out = model(x) self.assertEqual(out.shape[-1], 50) def _make_sliced_model(self, model, stop_layer): layers = OrderedDict() for name, layer in model.named_children(): layers[name] = layer if name == stop_layer: break new_model = torch.nn.Sequential(layers) return new_model def test_memory_efficient_densenet(self): input_shape = (1, 3, 300, 300) x = torch.rand(input_shape) for name in ['densenet121', 'densenet169', 'densenet201', 'densenet161']: model1 = models.__dict__[name](num_classes=50, memory_efficient=True) params = model1.state_dict() num_params = sum([x.numel() for x in model1.parameters()]) model1.eval() out1 = model1(x) out1.sum().backward() num_grad = sum([x.grad.numel() for x in model1.parameters() if x.grad is not None]) model2 = models.__dict__[name](num_classes=50, memory_efficient=False) model2.load_state_dict(params) model2.eval() out2 = model2(x) self.assertTrue(num_params == num_grad) torch.testing.assert_close(out1, out2, rtol=0.0, atol=1e-5) def test_resnet_dilation(self): # TODO improve tests to also check that each layer has the right dimensionality for i in product([False, True], [False, True], [False, True]): model = models.__dict__["resnet50"](replace_stride_with_dilation=i) model = self._make_sliced_model(model, stop_layer="layer4") model.eval() x = torch.rand(1, 3, 224, 224) out = model(x) f = 2 ** sum(i) self.assertEqual(out.shape, (1, 2048, 7 * f, 7 * f)) def test_mobilenet_v2_residual_setting(self): model = models.__dict__["mobilenet_v2"](inverted_residual_setting=[[1, 16, 1, 1], [6, 24, 2, 2]]) model.eval() x = torch.rand(1, 3, 224, 224) out = model(x) self.assertEqual(out.shape[-1], 1000) def test_mobilenet_norm_layer(self): for name in ["mobilenet_v2", "mobilenet_v3_large", "mobilenet_v3_small"]: model = models.__dict__[name]() self.assertTrue(any(isinstance(x, nn.BatchNorm2d) for x in model.modules())) def get_gn(num_channels): return nn.GroupNorm(32, num_channels) model = models.__dict__[name](norm_layer=get_gn) self.assertFalse(any(isinstance(x, nn.BatchNorm2d) for x in model.modules())) self.assertTrue(any(isinstance(x, nn.GroupNorm) for x in model.modules())) def test_inception_v3_eval(self): # replacement for models.inception_v3(pretrained=True) that does not download weights kwargs = {} kwargs['transform_input'] = True kwargs['aux_logits'] = True kwargs['init_weights'] = False name = "inception_v3" model = models.Inception3(**kwargs) model.aux_logits = False model.AuxLogits = None model = model.eval() x = torch.rand(1, 3, 299, 299) self.check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None)) def test_fasterrcnn_double(self): model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, pretrained_backbone=False) model.double() model.eval() input_shape = (3, 300, 300) x = torch.rand(input_shape, dtype=torch.float64) model_input = [x] out = model(model_input) self.assertIs(model_input[0], x) self.assertEqual(len(out), 1) self.assertTrue("boxes" in out[0]) self.assertTrue("scores" in out[0]) self.assertTrue("labels" in out[0]) def test_googlenet_eval(self): # replacement for models.googlenet(pretrained=True) that does not download weights kwargs = {} kwargs['transform_input'] = True kwargs['aux_logits'] = True kwargs['init_weights'] = False name = "googlenet" model = models.GoogLeNet(**kwargs) model.aux_logits = False model.aux1 = None model.aux2 = None model = model.eval() x = torch.rand(1, 3, 224, 224) self.check_jit_scriptable(model, (x,), unwrapper=script_model_unwrapper.get(name, None)) @unittest.skipIf(not torch.cuda.is_available(), 'needs GPU') def test_fasterrcnn_switch_devices(self): def checkOut(out): self.assertEqual(len(out), 1) self.assertTrue("boxes" in out[0]) self.assertTrue("scores" in out[0]) self.assertTrue("labels" in out[0]) model = models.detection.fasterrcnn_resnet50_fpn(num_classes=50, pretrained_backbone=False) model.cuda() model.eval() input_shape = (3, 300, 300) x = torch.rand(input_shape, device='cuda') model_input = [x] out = model(model_input) self.assertIs(model_input[0], x) checkOut(out) with torch.cuda.amp.autocast(): out = model(model_input) checkOut(out) # now switch to cpu and make sure it works model.cpu() x = x.cpu() out_cpu = model([x]) checkOut(out_cpu) def test_generalizedrcnn_transform_repr(self): min_size, max_size = 224, 299 image_mean = [0.485, 0.456, 0.406] image_std = [0.229, 0.224, 0.225] t = models.detection.transform.GeneralizedRCNNTransform(min_size=min_size, max_size=max_size, image_mean=image_mean, image_std=image_std) # Check integrity of object __repr__ attribute expected_string = 'GeneralizedRCNNTransform(' _indent = '\n ' expected_string += '{0}Normalize(mean={1}, std={2})'.format(_indent, image_mean, image_std) expected_string += '{0}Resize(min_size=({1},), max_size={2}, '.format(_indent, min_size, max_size) expected_string += "mode='bilinear')\n)" self.assertEqual(t.__repr__(), expected_string) _devs = [torch.device("cpu"), torch.device("cuda")] if torch.cuda.is_available() else [torch.device("cpu")] @pytest.mark.parametrize('model_name', get_available_classification_models()) @pytest.mark.parametrize('dev', _devs) def test_classification_model(model_name, dev): input_shape = (1, 3, 299, 299) if model_name == 'inception_v3' else (1, 3, 224, 224) ModelTester()._test_classification_model(model_name, input_shape, dev) @pytest.mark.parametrize('model_name', get_available_segmentation_models()) @pytest.mark.parametrize('dev', _devs) def test_segmentation_model(model_name, dev): ModelTester()._test_segmentation_model(model_name, dev) @pytest.mark.parametrize('model_name', get_available_detection_models()) @pytest.mark.parametrize('dev', _devs) def test_detection_model(model_name, dev): ModelTester()._test_detection_model(model_name, dev) @pytest.mark.parametrize('model_name', get_available_detection_models()) def test_detection_model_validation(model_name): ModelTester()._test_detection_model_validation(model_name) @pytest.mark.parametrize('model_name', get_available_video_models()) @pytest.mark.parametrize('dev', _devs) def test_video_model(model_name, dev): ModelTester()._test_video_model(model_name, dev) if __name__ == '__main__': pytest.main([__file__])