import torch import torchvision.utils as utils import unittest class Tester(unittest.TestCase): def test_make_grid_not_inplace(self): t = torch.rand(5, 3, 10, 10) t_clone = t.clone() utils.make_grid(t, normalize=False) assert torch.equal(t, t_clone), 'make_grid modified tensor in-place' utils.make_grid(t, normalize=True, scale_each=False) assert torch.equal(t, t_clone), 'make_grid modified tensor in-place' utils.make_grid(t, normalize=True, scale_each=True) assert torch.equal(t, t_clone), 'make_grid modified tensor in-place' def test_normalize_in_make_grid(self): t = torch.rand(5, 3, 10, 10) * 255 norm_max = torch.tensor(1.0) norm_min = torch.tensor(0.0) grid = utils.make_grid(t, normalize=True) grid_max = torch.max(grid) grid_min = torch.min(grid) # Rounding the result to one decimal for comparison n_digits = 1 rounded_grid_max = torch.round(grid_max * 10 ** n_digits) / (10 ** n_digits) rounded_grid_min = torch.round(grid_min * 10 ** n_digits) / (10 ** n_digits) assert torch.equal(norm_max, rounded_grid_max), 'Normalized max is not equal to 1' assert torch.equal(norm_min, rounded_grid_min), 'Normalized min is not equal to 0' if __name__ == '__main__': unittest.main()