import copy import torch from torchvision.models.detection import _utils from torchvision.models.detection.transform import GeneralizedRCNNTransform import unittest from torchvision.models.detection import backbone_utils class Tester(unittest.TestCase): def test_balanced_positive_negative_sampler(self): sampler = _utils.BalancedPositiveNegativeSampler(4, 0.25) # keep all 6 negatives first, then add 3 positives, last two are ignore matched_idxs = [torch.tensor([0, 0, 0, 0, 0, 0, 1, 1, 1, -1, -1])] pos, neg = sampler(matched_idxs) # we know the number of elements that should be sampled for the positive (1) # and the negative (3), and their location. Let's make sure that they are # there self.assertEqual(pos[0].sum(), 1) self.assertEqual(pos[0][6:9].sum(), 1) self.assertEqual(neg[0].sum(), 3) self.assertEqual(neg[0][0:6].sum(), 3) def test_resnet_fpn_backbone_frozen_layers(self): # we know how many initial layers and parameters of the network should # be frozen for each trainable_backbone_layers parameter value # i.e all 53 params are frozen if trainable_backbone_layers=0 # ad first 24 params are frozen if trainable_backbone_layers=2 expected_frozen_params = {0: 53, 1: 43, 2: 24, 3: 11, 4: 1, 5: 0} for train_layers, exp_froz_params in expected_frozen_params.items(): model = backbone_utils.resnet_fpn_backbone( 'resnet50', pretrained=False, trainable_layers=train_layers) # boolean list that is true if the param at that index is frozen is_frozen = [not parameter.requires_grad for _, parameter in model.named_parameters()] # check that expected initial number of layers are frozen self.assertTrue(all(is_frozen[:exp_froz_params])) def test_validate_resnet_inputs_detection(self): # default number of backbone layers to train ret = backbone_utils._validate_trainable_layers( pretrained=True, trainable_backbone_layers=None, max_value=5, default_value=3) self.assertEqual(ret, 3) # can't go beyond 5 with self.assertRaises(AssertionError): ret = backbone_utils._validate_trainable_layers( pretrained=True, trainable_backbone_layers=6, max_value=5, default_value=3) # if not pretrained, should use all trainable layers and warn with self.assertWarns(UserWarning): ret = backbone_utils._validate_trainable_layers( pretrained=False, trainable_backbone_layers=0, max_value=5, default_value=3) self.assertEqual(ret, 5) def test_transform_copy_targets(self): transform = GeneralizedRCNNTransform(300, 500, torch.zeros(3), torch.ones(3)) image = [torch.rand(3, 200, 300), torch.rand(3, 200, 200)] targets = [{'boxes': torch.rand(3, 4)}, {'boxes': torch.rand(2, 4)}] targets_copy = copy.deepcopy(targets) out = transform(image, targets) # noqa: F841 self.assertTrue(torch.equal(targets[0]['boxes'], targets_copy[0]['boxes'])) self.assertTrue(torch.equal(targets[1]['boxes'], targets_copy[1]['boxes'])) def test_not_float_normalize(self): transform = GeneralizedRCNNTransform(300, 500, torch.zeros(3), torch.ones(3)) image = [torch.randint(0, 255, (3, 200, 300), dtype=torch.uint8)] targets = [{'boxes': torch.rand(3, 4)}] with self.assertRaises(TypeError): out = transform(image, targets) # noqa: F841 if __name__ == '__main__': unittest.main()