from collections import OrderedDict from typing import Dict, Optional from torch import nn class IntermediateLayerGetter(nn.ModuleDict): """ Module wrapper that returns intermediate layers from a model It has a strong assumption that the modules have been registered into the model in the same order as they are used. This means that one should **not** reuse the same nn.Module twice in the forward if you want this to work. Additionally, it is only able to query submodules that are directly assigned to the model. So if `model` is passed, `model.feature1` can be returned, but not `model.feature1.layer2`. Args: model (nn.Module): model on which we will extract the features return_layers (Dict[name, new_name]): a dict containing the names of the modules for which the activations will be returned as the key of the dict, and the value of the dict is the name of the returned activation (which the user can specify). Examples:: >>> m = torchvision.models.resnet18(pretrained=True) >>> # extract layer1 and layer3, giving as names `feat1` and feat2` >>> new_m = torchvision.models._utils.IntermediateLayerGetter(m, >>> {'layer1': 'feat1', 'layer3': 'feat2'}) >>> out = new_m(torch.rand(1, 3, 224, 224)) >>> print([(k, v.shape) for k, v in out.items()]) >>> [('feat1', torch.Size([1, 64, 56, 56])), >>> ('feat2', torch.Size([1, 256, 14, 14]))] """ _version = 2 __annotations__ = { "return_layers": Dict[str, str], } def __init__(self, model: nn.Module, return_layers: Dict[str, str]) -> None: if not set(return_layers).issubset([name for name, _ in model.named_children()]): raise ValueError("return_layers are not present in model") orig_return_layers = return_layers return_layers = {str(k): str(v) for k, v in return_layers.items()} layers = OrderedDict() for name, module in model.named_children(): layers[name] = module if name in return_layers: del return_layers[name] if not return_layers: break super(IntermediateLayerGetter, self).__init__(layers) self.return_layers = orig_return_layers def forward(self, x): out = OrderedDict() for name, module in self.items(): x = module(x) if name in self.return_layers: out_name = self.return_layers[name] out[out_name] = x return out def _make_divisible(v: float, divisor: int, min_value: Optional[int] = None) -> int: """ This function is taken from the original tf repo. It ensures that all layers have a channel number that is divisible by 8 It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py """ if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < 0.9 * v: new_v += divisor return new_v