import sys import torch _onnx_opset_version = 11 def _register_custom_op(): from torch.onnx.symbolic_helper import parse_args, scalar_type_to_onnx, scalar_type_to_pytorch_type, \ cast_pytorch_to_onnx from torch.onnx.symbolic_opset9 import select, unsqueeze, squeeze, _cast_Long, reshape @parse_args('v', 'v', 'f') def symbolic_multi_label_nms(g, boxes, scores, iou_threshold): boxes = unsqueeze(g, boxes, 0) scores = unsqueeze(g, unsqueeze(g, scores, 0), 0) max_output_per_class = g.op('Constant', value_t=torch.tensor([sys.maxsize], dtype=torch.long)) iou_threshold = g.op('Constant', value_t=torch.tensor([iou_threshold], dtype=torch.float)) nms_out = g.op('NonMaxSuppression', boxes, scores, max_output_per_class, iou_threshold) return squeeze(g, select(g, nms_out, 1, g.op('Constant', value_t=torch.tensor([2], dtype=torch.long))), 1) @parse_args('v', 'v', 'f', 'i', 'i', 'i') def roi_align(g, input, rois, spatial_scale, pooled_height, pooled_width, sampling_ratio): batch_indices = _cast_Long(g, squeeze(g, select(g, rois, 1, g.op('Constant', value_t=torch.tensor([0], dtype=torch.long))), 1), False) rois = select(g, rois, 1, g.op('Constant', value_t=torch.tensor([1, 2, 3, 4], dtype=torch.long))) return g.op('RoiAlign', input, rois, batch_indices, spatial_scale_f=spatial_scale, output_height_i=pooled_height, output_width_i=pooled_width, sampling_ratio_i=sampling_ratio) @parse_args('v', 'v', 'f', 'i', 'i') def roi_pool(g, input, rois, spatial_scale, pooled_height, pooled_width): roi_pool = g.op('MaxRoiPool', input, rois, pooled_shape_i=(pooled_height, pooled_width), spatial_scale_f=spatial_scale) return roi_pool, None @parse_args('v', 'is') def new_empty_tensor_op(g, input, shape): dtype = input.type().scalarType() if dtype is None: dtype = 'Float' dtype = scalar_type_to_onnx.index(cast_pytorch_to_onnx[dtype]) shape = g.op("Constant", value_t=torch.tensor(shape)) return g.op("ConstantOfShape", shape, value_t=torch.tensor([0], dtype=scalar_type_to_pytorch_type[dtype])) from torch.onnx import register_custom_op_symbolic register_custom_op_symbolic('torchvision::nms', symbolic_multi_label_nms, _onnx_opset_version) register_custom_op_symbolic('torchvision::roi_align', roi_align, _onnx_opset_version) register_custom_op_symbolic('torchvision::roi_pool', roi_pool, _onnx_opset_version) register_custom_op_symbolic('torchvision::_new_empty_tensor_op', new_empty_tensor_op, _onnx_opset_version)