#include #include #include #include template inline void add(T* address, const T& val) { *address += val; } template void PSROIPoolForward( const T* input, const T spatial_scale, const int channels, const int height, const int width, const int pooled_height, const int pooled_width, const T* rois, const int channels_out, const int num_rois, T* output, int* channel_mapping) { for (int n = 0; n < num_rois; ++n) { const T* offset_rois = rois + n * 5; int roi_batch_ind = offset_rois[0]; int roi_start_w = round(offset_rois[1] * spatial_scale); int roi_start_h = round(offset_rois[2] * spatial_scale); int roi_end_w = round(offset_rois[3] * spatial_scale); int roi_end_h = round(offset_rois[4] * spatial_scale); // Force too small ROIs to be 1x1 int roi_width = std::max(roi_end_w - roi_start_w, 1); int roi_height = std::max(roi_end_h - roi_start_h, 1); T bin_size_h = static_cast(roi_height) / static_cast(pooled_height); T bin_size_w = static_cast(roi_width) / static_cast(pooled_width); int c_in = 0; for (int c_out = 0; c_out < channels_out; ++c_out) { for (int ph = 0; ph < pooled_height; ++ph) { for (int pw = 0; pw < pooled_width; ++pw) { int hstart = static_cast(floor(static_cast(ph) * bin_size_h)); int wstart = static_cast(floor(static_cast(pw) * bin_size_w)); int hend = static_cast(ceil(static_cast(ph + 1) * bin_size_h)); int wend = static_cast(ceil(static_cast(pw + 1) * bin_size_w)); // Add roi offsets and clip to input boundaries hstart = std::min(std::max(hstart + roi_start_h, 0), height - 1); hend = std::min(std::max(hend + roi_start_h, 0), height - 1); wstart = std::min(std::max(wstart + roi_start_w, 0), width - 1); wend = std::min(std::max(wend + roi_start_w, 0), width - 1); bool is_empty = (hend <= hstart) || (wend <= wstart); const T* offset_input = input + (roi_batch_ind * channels + c_in) * height * width; T out_sum = 0; for (int h = hstart; h < hend; ++h) { for (int w = wstart; w < wend; ++w) { int input_index = h * width + w; out_sum += offset_input[input_index]; } } int index = ((n * channels_out + c_out) * pooled_height + ph) * pooled_width + pw; T bin_area = (hend - hstart) * (wend - wstart); output[index] = is_empty ? static_cast(0) : out_sum / bin_area; channel_mapping[index] = c_in; c_in++; } } } } } template void PSROIPoolBackward( const T* grad_output, const int* channel_mapping, const int num_rois, const T spatial_scale, const int channels, const int height, const int width, const int pooled_height, const int pooled_width, const int channels_out, T* grad_input, const T* rois) { for (int n = 0; n < num_rois; ++n) { const T* offset_rois = rois + n * 5; int roi_batch_ind = offset_rois[0]; int roi_start_w = roundf(offset_rois[1] * spatial_scale); int roi_start_h = roundf(offset_rois[2] * spatial_scale); int roi_end_w = roundf(offset_rois[3] * spatial_scale); int roi_end_h = roundf(offset_rois[4] * spatial_scale); // Force too small ROIs to be 1x1 int roi_width = std::max(roi_end_w - roi_start_w, 1); int roi_height = std::max(roi_end_h - roi_start_h, 1); T bin_size_h = static_cast(roi_height) / static_cast(pooled_height); T bin_size_w = static_cast(roi_width) / static_cast(pooled_width); for (int ph = 0; ph < pooled_height; ++ph) { for (int pw = 0; pw < pooled_width; ++pw) { int hstart = static_cast(floor(static_cast(ph) * bin_size_h)); int wstart = static_cast(floor(static_cast(pw) * bin_size_w)); int hend = static_cast(ceil(static_cast(ph + 1) * bin_size_h)); int wend = static_cast(ceil(static_cast(pw + 1) * bin_size_w)); // Add roi offsets and clip to input boundaries hstart = std::min(std::max(hstart + roi_start_h, 0), height); hend = std::min(std::max(hend + roi_start_h, 0), height); wstart = std::min(std::max(wstart + roi_start_w, 0), width); wend = std::min(std::max(wend + roi_start_w, 0), width); bool is_empty = (hend <= hstart) || (wend <= wstart); for (int c_out = 0; c_out < channels_out; ++c_out) { int index = ((n * channels_out + c_out) * pooled_height + ph) * pooled_width + pw; int c_in = channel_mapping[index]; T* grad_input_offset = grad_input + (roi_batch_ind * channels + c_in) * height * width; T bin_area = (hend - hstart) * (wend - wstart); T diff_val = is_empty ? static_cast(0) : grad_output[index] / bin_area; for (int h = hstart; h < hend; ++h) { for (int w = wstart; w < wend; ++w) { int grad_input_index = h * width + w; add(grad_input_offset + grad_input_index, diff_val); } } } } } } } std::tuple PSROIPool_forward_cpu( const at::Tensor& input, const at::Tensor& rois, const float spatial_scale, const int pooled_height, const int pooled_width) { // Check if input tensors are CPU tensors AT_ASSERTM(input.device().is_cpu(), "input must be a CPU tensor"); AT_ASSERTM(rois.device().is_cpu(), "rois must be a CPU tensor"); at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2}; at::CheckedFrom c = "PSROIPool_forward_cpu"; at::checkAllSameType(c, {input_t, rois_t}); int num_rois = rois.size(0); int channels = input.size(1); int height = input.size(2); int width = input.size(3); AT_ASSERTM( channels % (pooled_height * pooled_width) == 0, "input channels must be a multiple of pooling height * pooling width"); int channels_out = channels / (pooled_height * pooled_width); auto output = at::zeros( {num_rois, channels_out, pooled_height, pooled_width}, input.options()); auto channel_mapping = at::zeros(output.sizes(), input.options().dtype(at::kInt)); auto output_size = output.numel(); if (output_size == 0) { return std::make_tuple(output, channel_mapping); } AT_DISPATCH_FLOATING_TYPES_AND_HALF( input.scalar_type(), "PSROIPool_forward", [&] { PSROIPoolForward( input.contiguous().data_ptr(), spatial_scale, channels, height, width, pooled_height, pooled_width, rois.contiguous().data_ptr(), channels_out, num_rois, output.data_ptr(), channel_mapping.data_ptr()); }); return std::make_tuple(output, channel_mapping); } at::Tensor PSROIPool_backward_cpu( const at::Tensor& grad, const at::Tensor& rois, const at::Tensor& channel_mapping, const float spatial_scale, const int pooled_height, const int pooled_width, const int batch_size, const int channels, const int height, const int width) { // Check if input tensors are CPU tensors AT_ASSERTM(grad.device().is_cpu(), "grad must be a CPU tensor"); AT_ASSERTM(rois.device().is_cpu(), "rois must be a CPU tensor"); AT_ASSERTM( channel_mapping.device().is_cpu(), "channel_mapping must be a CPU tensor"); at::TensorArg grad_t{grad, "grad", 1}, rois_t{rois, "rois", 2}, channel_mapping_t{channel_mapping, "channel_mapping", 3}; at::CheckedFrom c = "PSROIPool_backward_cpu"; at::checkAllSameType(c, {grad_t, rois_t}); auto num_rois = rois.size(0); auto grad_input = at::zeros({batch_size, channels, height, width}, grad.options()); // handle possibly empty gradients if (grad.numel() == 0) { return grad_input; } int channels_out = channels / (pooled_height * pooled_width); AT_DISPATCH_FLOATING_TYPES_AND_HALF( grad.scalar_type(), "PSROIPool_backward", [&] { PSROIPoolBackward( grad.contiguous().data_ptr(), channel_mapping.data_ptr(), num_rois, spatial_scale, channels, height, width, pooled_height, pooled_width, channels_out, grad_input.data_ptr(), rois.contiguous().data_ptr()); }); return grad_input; }