"""The models subpackage contains definitions for the following model architectures: - `AlexNet`_ - `VGG`_ - `ResNet`_ - `SqueezeNet`_ You can construct a model with random weights by calling its constructor: .. code:: python import torchvision.models as models resnet18 = models.resnet18() alexnet = models.alexnet() squeezenet = models.squeezenet1_0() We provide pre-trained models for the ResNet variants and AlexNet, using the PyTorch :mod:`torch.utils.model_zoo`. These can constructed by passing ``pretrained=True``: .. code:: python import torchvision.models as models resnet18 = models.resnet18(pretrained=True) alexnet = models.alexnet(pretrained=True) ImageNet 1-crop error rates (224x224) ======================== ============= ============= Network Top-1 error Top-5 error ======================== ============= ============= ResNet-18 30.24 10.92 ResNet-34 26.70 8.58 ResNet-50 23.85 7.13 ResNet-101 22.63 6.44 ResNet-152 21.69 5.94 AlexNet 43.45 20.91 VGG-11 32.14 12.12 VGG-13 31.04 11.40 VGG-16 29.11 10.17 VGG-19 28.42 9.69 SqueezeNet 1.0 41.90 19.58 SqueezeNet 1.1 41.81 19.38 ======================== ============= ============= .. _AlexNet: https://arxiv.org/abs/1404.5997 .. _VGG: https://arxiv.org/abs/1409.1556 .. _ResNet: https://arxiv.org/abs/1512.03385 .. _SqueezeNet: https://arxiv.org/abs/1602.07360 """ from .alexnet import * from .resnet import * from .vgg import * from .squeezenet import *