import argparse import os from timeit import default_timer as timer from tqdm import tqdm import torch import torch.utils.data import torchvision.transforms as transforms import torchvision.datasets as datasets parser = argparse.ArgumentParser(description='PyTorch ImageNet Training') parser.add_argument('--data', metavar='PATH', required=True, help='path to dataset') parser.add_argument('--nThreads', '-j', default=2, type=int, metavar='N', help='number of data loading threads (default: 2)') parser.add_argument('--batchSize', '-b', default=256, type=int, metavar='N', help='mini-batch size (1 = pure stochastic) Default: 256') if __name__ == "__main__": args = parser.parse_args() # Data loading code transform = transforms.Compose([ transforms.RandomSizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean = [ 0.485, 0.456, 0.406 ], std = [ 0.229, 0.224, 0.225 ]), ]) traindir = os.path.join(args.data, 'train') valdir = os.path.join(args.data, 'val') train = datasets.ImageFolder(traindir, transform) val = datasets.ImageFolder(valdir, transform) train_loader = torch.utils.data.DataLoader( train, batch_size=args.batchSize, shuffle=True, num_workers=args.nThreads) train_iter = iter(train_loader) start_time = timer() batch_count = 100 * args.nThreads for i in tqdm(xrange(batch_count)): batch = next(train_iter) end_time = timer() print("Performance: {dataset:.0f} minutes/dataset, {batch:.2f} secs/batch, {image:.2f} ms/image".format( dataset=(end_time - start_time) * len(train_loader) / (batch_count * args.batchSize) / 60.0, batch=(end_time - start_time) / float(batch_count), image=(end_time - start_time) / (batch_count * args.batchSize) * 1.0e+3))