from typing import List import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from torch.nn.modules.batchnorm import BatchNorm2d from torch.nn.modules.instancenorm import InstanceNorm2d from torchvision.ops import ConvNormActivation from ...utils import _log_api_usage_once from ._utils import grid_sample, make_coords_grid, upsample_flow __all__ = ( "RAFT", "raft_large", "raft_small", ) class ResidualBlock(nn.Module): """Slightly modified Residual block with extra relu and biases.""" def __init__(self, in_channels, out_channels, *, norm_layer, stride=1): super().__init__() # Note regarding bias=True: # Usually we can pass bias=False in conv layers followed by a norm layer. # But in the RAFT training reference, the BatchNorm2d layers are only activated for the first dataset, # and frozen for the rest of the training process (i.e. set as eval()). The bias term is thus still useful # for the rest of the datasets. Technically, we could remove the bias for other norm layers like Instance norm # because these aren't frozen, but we don't bother (also, we woudn't be able to load the original weights). self.convnormrelu1 = ConvNormActivation( in_channels, out_channels, norm_layer=norm_layer, kernel_size=3, stride=stride, bias=True ) self.convnormrelu2 = ConvNormActivation( out_channels, out_channels, norm_layer=norm_layer, kernel_size=3, bias=True ) if stride == 1: self.downsample = nn.Identity() else: self.downsample = ConvNormActivation( in_channels, out_channels, norm_layer=norm_layer, kernel_size=1, stride=stride, bias=True, activation_layer=None, ) self.relu = nn.ReLU(inplace=True) def forward(self, x): y = x y = self.convnormrelu1(y) y = self.convnormrelu2(y) x = self.downsample(x) return self.relu(x + y) class BottleneckBlock(nn.Module): """Slightly modified BottleNeck block (extra relu and biases)""" def __init__(self, in_channels, out_channels, *, norm_layer, stride=1): super(BottleneckBlock, self).__init__() # See note in ResidualBlock for the reason behind bias=True self.convnormrelu1 = ConvNormActivation( in_channels, out_channels // 4, norm_layer=norm_layer, kernel_size=1, bias=True ) self.convnormrelu2 = ConvNormActivation( out_channels // 4, out_channels // 4, norm_layer=norm_layer, kernel_size=3, stride=stride, bias=True ) self.convnormrelu3 = ConvNormActivation( out_channels // 4, out_channels, norm_layer=norm_layer, kernel_size=1, bias=True ) self.relu = nn.ReLU(inplace=True) if stride == 1: self.downsample = nn.Identity() else: self.downsample = ConvNormActivation( in_channels, out_channels, norm_layer=norm_layer, kernel_size=1, stride=stride, bias=True, activation_layer=None, ) def forward(self, x): y = x y = self.convnormrelu1(y) y = self.convnormrelu2(y) y = self.convnormrelu3(y) x = self.downsample(x) return self.relu(x + y) class FeatureEncoder(nn.Module): """The feature encoder, used both as the actual feature encoder, and as the context encoder. It must downsample its input by 8. """ def __init__(self, *, block=ResidualBlock, layers=(64, 64, 96, 128, 256), norm_layer=nn.BatchNorm2d): super().__init__() assert len(layers) == 5 # See note in ResidualBlock for the reason behind bias=True self.convnormrelu = ConvNormActivation(3, layers[0], norm_layer=norm_layer, kernel_size=7, stride=2, bias=True) self.layer1 = self._make_2_blocks(block, layers[0], layers[1], norm_layer=norm_layer, first_stride=1) self.layer2 = self._make_2_blocks(block, layers[1], layers[2], norm_layer=norm_layer, first_stride=2) self.layer3 = self._make_2_blocks(block, layers[2], layers[3], norm_layer=norm_layer, first_stride=2) self.conv = nn.Conv2d(layers[3], layers[4], kernel_size=1) self._init_weights() def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d)): if m.weight is not None: nn.init.constant_(m.weight, 1) if m.bias is not None: nn.init.constant_(m.bias, 0) def _make_2_blocks(self, block, in_channels, out_channels, norm_layer, first_stride): block1 = block(in_channels, out_channels, norm_layer=norm_layer, stride=first_stride) block2 = block(out_channels, out_channels, norm_layer=norm_layer, stride=1) return nn.Sequential(block1, block2) def forward(self, x): x = self.convnormrelu(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.conv(x) return x class MotionEncoder(nn.Module): """The motion encoder, part of the update block. Takes the current predicted flow and the correlation features as input and returns an encoded version of these. """ def __init__(self, *, in_channels_corr, corr_layers=(256, 192), flow_layers=(128, 64), out_channels=128): super().__init__() assert len(flow_layers) == 2 assert len(corr_layers) in (1, 2) self.convcorr1 = ConvNormActivation(in_channels_corr, corr_layers[0], norm_layer=None, kernel_size=1) if len(corr_layers) == 2: self.convcorr2 = ConvNormActivation(corr_layers[0], corr_layers[1], norm_layer=None, kernel_size=3) else: self.convcorr2 = nn.Identity() self.convflow1 = ConvNormActivation(2, flow_layers[0], norm_layer=None, kernel_size=7) self.convflow2 = ConvNormActivation(flow_layers[0], flow_layers[1], norm_layer=None, kernel_size=3) # out_channels - 2 because we cat the flow (2 channels) at the end self.conv = ConvNormActivation( corr_layers[-1] + flow_layers[-1], out_channels - 2, norm_layer=None, kernel_size=3 ) self.out_channels = out_channels def forward(self, flow, corr_features): corr = self.convcorr1(corr_features) corr = self.convcorr2(corr) flow_orig = flow flow = self.convflow1(flow) flow = self.convflow2(flow) corr_flow = torch.cat([corr, flow], dim=1) corr_flow = self.conv(corr_flow) return torch.cat([corr_flow, flow_orig], dim=1) class ConvGRU(nn.Module): """Convolutional Gru unit.""" def __init__(self, *, input_size, hidden_size, kernel_size, padding): super().__init__() self.convz = nn.Conv2d(hidden_size + input_size, hidden_size, kernel_size=kernel_size, padding=padding) self.convr = nn.Conv2d(hidden_size + input_size, hidden_size, kernel_size=kernel_size, padding=padding) self.convq = nn.Conv2d(hidden_size + input_size, hidden_size, kernel_size=kernel_size, padding=padding) def forward(self, h, x): hx = torch.cat([h, x], dim=1) z = torch.sigmoid(self.convz(hx)) r = torch.sigmoid(self.convr(hx)) q = torch.tanh(self.convq(torch.cat([r * h, x], dim=1))) h = (1 - z) * h + z * q return h def _pass_through_h(h, _): # Declared here for torchscript return h class RecurrentBlock(nn.Module): """Recurrent block, part of the update block. Takes the current hidden state and the concatenation of (motion encoder output, context) as input. Returns an updated hidden state. """ def __init__(self, *, input_size, hidden_size, kernel_size=((1, 5), (5, 1)), padding=((0, 2), (2, 0))): super().__init__() assert len(kernel_size) == len(padding) assert len(kernel_size) in (1, 2) self.convgru1 = ConvGRU( input_size=input_size, hidden_size=hidden_size, kernel_size=kernel_size[0], padding=padding[0] ) if len(kernel_size) == 2: self.convgru2 = ConvGRU( input_size=input_size, hidden_size=hidden_size, kernel_size=kernel_size[1], padding=padding[1] ) else: self.convgru2 = _pass_through_h self.hidden_size = hidden_size def forward(self, h, x): h = self.convgru1(h, x) h = self.convgru2(h, x) return h class FlowHead(nn.Module): """Flow head, part of the update block. Takes the hidden state of the recurrent unit as input, and outputs the predicted "delta flow". """ def __init__(self, *, in_channels, hidden_size): super().__init__() self.conv1 = nn.Conv2d(in_channels, hidden_size, 3, padding=1) self.conv2 = nn.Conv2d(hidden_size, 2, 3, padding=1) self.relu = nn.ReLU(inplace=True) def forward(self, x): return self.conv2(self.relu(self.conv1(x))) class UpdateBlock(nn.Module): """The update block which contains the motion encoder, the recurrent block, and the flow head. It must expose a ``hidden_state_size`` attribute which is the hidden state size of its recurrent block. """ def __init__(self, *, motion_encoder, recurrent_block, flow_head): super().__init__() self.motion_encoder = motion_encoder self.recurrent_block = recurrent_block self.flow_head = flow_head self.hidden_state_size = recurrent_block.hidden_size def forward(self, hidden_state, context, corr_features, flow): motion_features = self.motion_encoder(flow, corr_features) x = torch.cat([context, motion_features], dim=1) hidden_state = self.recurrent_block(hidden_state, x) delta_flow = self.flow_head(hidden_state) return hidden_state, delta_flow class MaskPredictor(nn.Module): """Mask predictor to be used when upsampling the predicted flow. It takes the hidden state of the recurrent unit as input and outputs the mask. This is not used in the raft-small model. """ def __init__(self, *, in_channels, hidden_size, multiplier=0.25): super().__init__() self.convrelu = ConvNormActivation(in_channels, hidden_size, norm_layer=None, kernel_size=3) # 8 * 8 * 9 because the predicted flow is downsampled by 8, from the downsampling of the initial FeatureEncoder # and we interpolate with all 9 surrounding neighbors. See paper and appendix B. self.conv = nn.Conv2d(hidden_size, 8 * 8 * 9, 1, padding=0) # In the original code, they use a factor of 0.25 to "downweight the gradients" of that branch. # See e.g. https://github.com/princeton-vl/RAFT/issues/119#issuecomment-953950419 # or https://github.com/princeton-vl/RAFT/issues/24. # It doesn't seem to affect epe significantly and can likely be set to 1. self.multiplier = multiplier def forward(self, x): x = self.convrelu(x) x = self.conv(x) return self.multiplier * x class CorrBlock(nn.Module): """The correlation block. Creates a correlation pyramid with ``num_levels`` levels from the outputs of the feature encoder, and then indexes from this pyramid to create correlation features. The "indexing" of a given centroid pixel x' is done by concatenating its surrounding neighbors that are within a ``radius``, according to the infinity norm (see paper section 3.2). Note: typo in the paper, it should be infinity norm, not 1-norm. """ def __init__(self, *, num_levels: int = 4, radius: int = 4): super().__init__() self.num_levels = num_levels self.radius = radius self.corr_pyramid: List[Tensor] = [torch.tensor(0)] # useless, but torchscript is otherwise confused :') # The neighborhood of a centroid pixel x' is {x' + delta, ||delta||_inf <= radius} # so it's a square surrounding x', and its sides have a length of 2 * radius + 1 # The paper claims that it's ||.||_1 instead of ||.||_inf but it's a typo: # https://github.com/princeton-vl/RAFT/issues/122 self.out_channels = num_levels * (2 * radius + 1) ** 2 def build_pyramid(self, fmap1, fmap2): """Build the correlation pyramid from two feature maps. The correlation volume is first computed as the dot product of each pair (pixel_in_fmap1, pixel_in_fmap2) The last 2 dimensions of the correlation volume are then pooled num_levels times at different resolutions to build the correlation pyramid. """ torch._assert(fmap1.shape == fmap2.shape, "Input feature maps should have the same shapes") corr_volume = self._compute_corr_volume(fmap1, fmap2) batch_size, h, w, num_channels, _, _ = corr_volume.shape # _, _ = h, w corr_volume = corr_volume.reshape(batch_size * h * w, num_channels, h, w) self.corr_pyramid = [corr_volume] for _ in range(self.num_levels - 1): corr_volume = F.avg_pool2d(corr_volume, kernel_size=2, stride=2) self.corr_pyramid.append(corr_volume) def index_pyramid(self, centroids_coords): """Return correlation features by indexing from the pyramid.""" neighborhood_side_len = 2 * self.radius + 1 # see note in __init__ about out_channels di = torch.linspace(-self.radius, self.radius, neighborhood_side_len) dj = torch.linspace(-self.radius, self.radius, neighborhood_side_len) delta = torch.stack(torch.meshgrid(di, dj, indexing="ij"), dim=-1).to(centroids_coords.device) delta = delta.view(1, neighborhood_side_len, neighborhood_side_len, 2) batch_size, _, h, w = centroids_coords.shape # _ = 2 centroids_coords = centroids_coords.permute(0, 2, 3, 1).reshape(batch_size * h * w, 1, 1, 2) indexed_pyramid = [] for corr_volume in self.corr_pyramid: sampling_coords = centroids_coords + delta # end shape is (batch_size * h * w, side_len, side_len, 2) indexed_corr_volume = grid_sample(corr_volume, sampling_coords, align_corners=True, mode="bilinear").view( batch_size, h, w, -1 ) indexed_pyramid.append(indexed_corr_volume) centroids_coords = centroids_coords / 2 corr_features = torch.cat(indexed_pyramid, dim=-1).permute(0, 3, 1, 2).contiguous() expected_output_shape = (batch_size, self.out_channels, h, w) torch._assert( corr_features.shape == expected_output_shape, f"Output shape of index pyramid is incorrect. Should be {expected_output_shape}, got {corr_features.shape}", ) return corr_features def _compute_corr_volume(self, fmap1, fmap2): batch_size, num_channels, h, w = fmap1.shape fmap1 = fmap1.view(batch_size, num_channels, h * w) fmap2 = fmap2.view(batch_size, num_channels, h * w) corr = torch.matmul(fmap1.transpose(1, 2), fmap2) corr = corr.view(batch_size, h, w, 1, h, w) return corr / torch.sqrt(torch.tensor(num_channels)) class RAFT(nn.Module): def __init__(self, *, feature_encoder, context_encoder, corr_block, update_block, mask_predictor=None): """RAFT model from `RAFT: Recurrent All Pairs Field Transforms for Optical Flow `_. args: feature_encoder (nn.Module): The feature encoder. It must downsample the input by 8. Its input is the concatenation of ``image1`` and ``image2``. context_encoder (nn.Module): The context encoder. It must downsample the input by 8. Its input is ``image1``. As in the original implementation, its output will be split into 2 parts: - one part will be used as the actual "context", passed to the recurrent unit of the ``update_block`` - one part will be used to initialize the hidden state of the of the recurrent unit of the ``update_block`` These 2 parts are split according to the ``hidden_state_size`` of the ``update_block``, so the output of the ``context_encoder`` must be strictly greater than ``hidden_state_size``. corr_block (nn.Module): The correlation block, which creates a correlation pyramid from the output of the ``feature_encoder``, and then indexes from this pyramid to create correlation features. It must expose 2 methods: - a ``build_pyramid`` method that takes ``feature_map_1`` and ``feature_map_2`` as input (these are the output of the ``feature_encoder``). - a ``index_pyramid`` method that takes the coordinates of the centroid pixels as input, and returns the correlation features. See paper section 3.2. It must expose an ``out_channels`` attribute. update_block (nn.Module): The update block, which contains the motion encoder, the recurrent unit, and the flow head. It takes as input the hidden state of its recurrent unit, the context, the correlation features, and the current predicted flow. It outputs an updated hidden state, and the ``delta_flow`` prediction (see paper appendix A). It must expose a ``hidden_state_size`` attribute. mask_predictor (nn.Module, optional): Predicts the mask that will be used to upsample the predicted flow. The output channel must be 8 * 8 * 9 - see paper section 3.3, and Appendix B. If ``None`` (default), the flow is upsampled using interpolation. """ super().__init__() _log_api_usage_once(self) self.feature_encoder = feature_encoder self.context_encoder = context_encoder self.corr_block = corr_block self.update_block = update_block self.mask_predictor = mask_predictor if not hasattr(self.update_block, "hidden_state_size"): raise ValueError("The update_block parameter should expose a 'hidden_state_size' attribute.") def forward(self, image1, image2, num_flow_updates: int = 12): batch_size, _, h, w = image1.shape torch._assert((h, w) == image2.shape[-2:], "input images should have the same shape") torch._assert((h % 8 == 0) and (w % 8 == 0), "input image H and W should be divisible by 8") fmaps = self.feature_encoder(torch.cat([image1, image2], dim=0)) fmap1, fmap2 = torch.chunk(fmaps, chunks=2, dim=0) torch._assert(fmap1.shape[-2:] == (h // 8, w // 8), "The feature encoder should downsample H and W by 8") self.corr_block.build_pyramid(fmap1, fmap2) context_out = self.context_encoder(image1) torch._assert(context_out.shape[-2:] == (h // 8, w // 8), "The context encoder should downsample H and W by 8") # As in the original paper, the actual output of the context encoder is split in 2 parts: # - one part is used to initialize the hidden state of the recurent units of the update block # - the rest is the "actual" context. hidden_state_size = self.update_block.hidden_state_size out_channels_context = context_out.shape[1] - hidden_state_size torch._assert( out_channels_context > 0, f"The context encoder outputs {context_out.shape[1]} channels, but it should have at strictly more than" f"hidden_state={hidden_state_size} channels", ) hidden_state, context = torch.split(context_out, [hidden_state_size, out_channels_context], dim=1) hidden_state = torch.tanh(hidden_state) context = F.relu(context) coords0 = make_coords_grid(batch_size, h // 8, w // 8).cuda() coords1 = make_coords_grid(batch_size, h // 8, w // 8).cuda() flow_predictions = [] for _ in range(num_flow_updates): coords1 = coords1.detach() # Don't backpropagate gradients through this branch, see paper corr_features = self.corr_block.index_pyramid(centroids_coords=coords1) flow = coords1 - coords0 hidden_state, delta_flow = self.update_block(hidden_state, context, corr_features, flow) coords1 = coords1 + delta_flow up_mask = None if self.mask_predictor is None else self.mask_predictor(hidden_state) upsampled_flow = upsample_flow(flow=(coords1 - coords0), up_mask=up_mask) flow_predictions.append(upsampled_flow) return flow_predictions def _raft( *, # Feature encoder feature_encoder_layers, feature_encoder_block, feature_encoder_norm_layer, # Context encoder context_encoder_layers, context_encoder_block, context_encoder_norm_layer, # Correlation block corr_block_num_levels, corr_block_radius, # Motion encoder motion_encoder_corr_layers, motion_encoder_flow_layers, motion_encoder_out_channels, # Recurrent block recurrent_block_hidden_state_size, recurrent_block_kernel_size, recurrent_block_padding, # Flow Head flow_head_hidden_size, # Mask predictor use_mask_predictor, **kwargs, ): feature_encoder = kwargs.pop("feature_encoder", None) or FeatureEncoder( block=feature_encoder_block, layers=feature_encoder_layers, norm_layer=feature_encoder_norm_layer ) context_encoder = kwargs.pop("context_encoder", None) or FeatureEncoder( block=context_encoder_block, layers=context_encoder_layers, norm_layer=context_encoder_norm_layer ) corr_block = kwargs.pop("corr_block", None) or CorrBlock(num_levels=corr_block_num_levels, radius=corr_block_radius) update_block = kwargs.pop("update_block", None) if update_block is None: motion_encoder = MotionEncoder( in_channels_corr=corr_block.out_channels, corr_layers=motion_encoder_corr_layers, flow_layers=motion_encoder_flow_layers, out_channels=motion_encoder_out_channels, ) # See comments in forward pass of RAFT class about why we split the output of the context encoder out_channels_context = context_encoder_layers[-1] - recurrent_block_hidden_state_size recurrent_block = RecurrentBlock( input_size=motion_encoder.out_channels + out_channels_context, hidden_size=recurrent_block_hidden_state_size, kernel_size=recurrent_block_kernel_size, padding=recurrent_block_padding, ) flow_head = FlowHead(in_channels=recurrent_block_hidden_state_size, hidden_size=flow_head_hidden_size) update_block = UpdateBlock(motion_encoder=motion_encoder, recurrent_block=recurrent_block, flow_head=flow_head) mask_predictor = kwargs.pop("mask_predictor", None) if mask_predictor is None and use_mask_predictor: mask_predictor = MaskPredictor( in_channels=recurrent_block_hidden_state_size, hidden_size=256, multiplier=0.25, # See comment in MaskPredictor about this ) return RAFT( feature_encoder=feature_encoder, context_encoder=context_encoder, corr_block=corr_block, update_block=update_block, mask_predictor=mask_predictor, **kwargs, # not really needed, all params should be consumed by now ) def raft_large(*, pretrained=False, progress=True, **kwargs): """RAFT model from `RAFT: Recurrent All Pairs Field Transforms for Optical Flow `_. Args: pretrained (bool): TODO not implemented yet progress (bool): If True, displays a progress bar of the download to stderr kwargs (dict): Parameters that will be passed to the :class:`~torchvision.models.optical_flow.RAFT` class to override any default. Returns: nn.Module: The model. """ if pretrained: raise ValueError("Pretrained weights aren't available yet") return _raft( # Feature encoder feature_encoder_layers=(64, 64, 96, 128, 256), feature_encoder_block=ResidualBlock, feature_encoder_norm_layer=InstanceNorm2d, # Context encoder context_encoder_layers=(64, 64, 96, 128, 256), context_encoder_block=ResidualBlock, context_encoder_norm_layer=BatchNorm2d, # Correlation block corr_block_num_levels=4, corr_block_radius=4, # Motion encoder motion_encoder_corr_layers=(256, 192), motion_encoder_flow_layers=(128, 64), motion_encoder_out_channels=128, # Recurrent block recurrent_block_hidden_state_size=128, recurrent_block_kernel_size=((1, 5), (5, 1)), recurrent_block_padding=((0, 2), (2, 0)), # Flow head flow_head_hidden_size=256, # Mask predictor use_mask_predictor=True, **kwargs, ) def raft_small(*, pretrained=False, progress=True, **kwargs): """RAFT "small" model from `RAFT: Recurrent All Pairs Field Transforms for Optical Flow `_. Args: pretrained (bool): TODO not implemented yet progress (bool): If True, displays a progress bar of the download to stderr kwargs (dict): Parameters that will be passed to the :class:`~torchvision.models.optical_flow.RAFT` class to override any default. Returns: nn.Module: The model. """ if pretrained: raise ValueError("Pretrained weights aren't available yet") return _raft( # Feature encoder feature_encoder_layers=(32, 32, 64, 96, 128), feature_encoder_block=BottleneckBlock, feature_encoder_norm_layer=InstanceNorm2d, # Context encoder context_encoder_layers=(32, 32, 64, 96, 160), context_encoder_block=BottleneckBlock, context_encoder_norm_layer=None, # Correlation block corr_block_num_levels=4, corr_block_radius=3, # Motion encoder motion_encoder_corr_layers=(96,), motion_encoder_flow_layers=(64, 32), motion_encoder_out_channels=82, # Recurrent block recurrent_block_hidden_state_size=96, recurrent_block_kernel_size=(3,), recurrent_block_padding=(1,), # Flow head flow_head_hidden_size=128, # Mask predictor use_mask_predictor=False, **kwargs, )