from collections import defaultdict from PIL import Image from html.parser import HTMLParser import glob import os from .vision import VisionDataset class Flickr8kParser(HTMLParser): """Parser for extracting captions from the Flickr8k dataset web page.""" def __init__(self, root): super(Flickr8kParser, self).__init__() self.root = root # Data structure to store captions self.annotations = {} # State variables self.in_table = False self.current_tag = None self.current_img = None def handle_starttag(self, tag, attrs): self.current_tag = tag if tag == 'table': self.in_table = True def handle_endtag(self, tag): self.current_tag = None if tag == 'table': self.in_table = False def handle_data(self, data): if self.in_table: if data == 'Image Not Found': self.current_img = None elif self.current_tag == 'a': img_id = data.split('/')[-2] img_id = os.path.join(self.root, img_id + '_*.jpg') img_id = glob.glob(img_id)[0] self.current_img = img_id self.annotations[img_id] = [] elif self.current_tag == 'li' and self.current_img: img_id = self.current_img self.annotations[img_id].append(data.strip()) class Flickr8k(VisionDataset): """`Flickr8k Entities `_ Dataset. Args: root (string): Root directory where images are downloaded to. ann_file (string): Path to annotation file. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.ToTensor`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. """ def __init__(self, root, ann_file, transform=None, target_transform=None): super(Flickr8k, self).__init__(root, transform=transform, target_transform=target_transform) self.ann_file = os.path.expanduser(ann_file) # Read annotations and store in a dict parser = Flickr8kParser(self.root) with open(self.ann_file) as fh: parser.feed(fh.read()) self.annotations = parser.annotations self.ids = list(sorted(self.annotations.keys())) def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: Tuple (image, target). target is a list of captions for the image. """ img_id = self.ids[index] # Image img = Image.open(img_id).convert('RGB') if self.transform is not None: img = self.transform(img) # Captions target = self.annotations[img_id] if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self): return len(self.ids) class Flickr30k(VisionDataset): """`Flickr30k Entities `_ Dataset. Args: root (string): Root directory where images are downloaded to. ann_file (string): Path to annotation file. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.ToTensor`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. """ def __init__(self, root, ann_file, transform=None, target_transform=None): super(Flickr30k, self).__init__(root, transform=transform, target_transform=target_transform) self.ann_file = os.path.expanduser(ann_file) # Read annotations and store in a dict self.annotations = defaultdict(list) with open(self.ann_file) as fh: for line in fh: img_id, caption = line.strip().split('\t') self.annotations[img_id[:-2]].append(caption) self.ids = list(sorted(self.annotations.keys())) def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: Tuple (image, target). target is a list of captions for the image. """ img_id = self.ids[index] # Image filename = os.path.join(self.root, img_id) img = Image.open(filename).convert('RGB') if self.transform is not None: img = self.transform(img) # Captions target = self.annotations[img_id] if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self): return len(self.ids)