import contextlib import decimal import inspect import math import re from typing import get_type_hints from unittest import mock import numpy as np import PIL.Image import pytest import torch import torchvision.transforms.v2 as transforms from common_utils import ( assert_equal, assert_no_warnings, cache, cpu_and_cuda, freeze_rng_state, ignore_jit_no_profile_information_warning, make_bounding_box, make_detection_mask, make_image, make_image_pil, make_image_tensor, make_segmentation_mask, make_video, needs_cuda, set_rng_seed, ) from torch import nn from torch.testing import assert_close from torch.utils._pytree import tree_map from torch.utils.data import DataLoader, default_collate from torchvision import datapoints from torchvision.transforms._functional_tensor import _max_value as get_max_value from torchvision.transforms.functional import pil_modes_mapping from torchvision.transforms.v2 import functional as F @pytest.fixture(autouse=True) def fix_rng_seed(): set_rng_seed(0) yield def _to_tolerances(maybe_tolerance_dict): if not isinstance(maybe_tolerance_dict, dict): return dict(rtol=None, atol=None) tolerances = dict(rtol=0, atol=0) tolerances.update(maybe_tolerance_dict) return tolerances def _check_kernel_cuda_vs_cpu(kernel, input, *args, rtol, atol, **kwargs): """Checks if the kernel produces closes results for inputs on GPU and CPU.""" if input.device.type != "cuda": return input_cuda = input.as_subclass(torch.Tensor) input_cpu = input_cuda.to("cpu") with freeze_rng_state(): actual = kernel(input_cuda, *args, **kwargs) with freeze_rng_state(): expected = kernel(input_cpu, *args, **kwargs) assert_close(actual, expected, check_device=False, rtol=rtol, atol=atol) @cache def _script(obj): try: return torch.jit.script(obj) except Exception as error: name = getattr(obj, "__name__", obj.__class__.__name__) raise AssertionError(f"Trying to `torch.jit.script` '{name}' raised the error above.") from error def _check_kernel_scripted_vs_eager(kernel, input, *args, rtol, atol, **kwargs): """Checks if the kernel is scriptable and if the scripted output is close to the eager one.""" if input.device.type != "cpu": return kernel_scripted = _script(kernel) input = input.as_subclass(torch.Tensor) with ignore_jit_no_profile_information_warning(): actual = kernel_scripted(input, *args, **kwargs) expected = kernel(input, *args, **kwargs) assert_close(actual, expected, rtol=rtol, atol=atol) def _check_kernel_batched_vs_unbatched(kernel, input, *args, rtol, atol, **kwargs): """Checks if the kernel produces close results for batched and unbatched inputs.""" unbatched_input = input.as_subclass(torch.Tensor) for batch_dims in [(2,), (2, 1)]: repeats = [*batch_dims, *[1] * input.ndim] actual = kernel(unbatched_input.repeat(repeats), *args, **kwargs) expected = kernel(unbatched_input, *args, **kwargs) # We can't directly call `.repeat()` on the output, since some kernel also return some additional metadata if isinstance(expected, torch.Tensor): expected = expected.repeat(repeats) else: tensor, *metadata = expected expected = (tensor.repeat(repeats), *metadata) assert_close(actual, expected, rtol=rtol, atol=atol) for degenerate_batch_dims in [(0,), (5, 0), (0, 5)]: degenerate_batched_input = torch.empty( degenerate_batch_dims + input.shape, dtype=input.dtype, device=input.device ) output = kernel(degenerate_batched_input, *args, **kwargs) # Most kernels just return a tensor, but some also return some additional metadata if not isinstance(output, torch.Tensor): output, *_ = output assert output.shape[: -input.ndim] == degenerate_batch_dims def check_kernel( kernel, input, *args, check_cuda_vs_cpu=True, check_scripted_vs_eager=True, check_batched_vs_unbatched=True, expect_same_dtype=True, **kwargs, ): initial_input_version = input._version output = kernel(input.as_subclass(torch.Tensor), *args, **kwargs) # Most kernels just return a tensor, but some also return some additional metadata if not isinstance(output, torch.Tensor): output, *_ = output # check that no inplace operation happened assert input._version == initial_input_version if expect_same_dtype: assert output.dtype == input.dtype assert output.device == input.device if check_cuda_vs_cpu: _check_kernel_cuda_vs_cpu(kernel, input, *args, **kwargs, **_to_tolerances(check_cuda_vs_cpu)) if check_scripted_vs_eager: _check_kernel_scripted_vs_eager(kernel, input, *args, **kwargs, **_to_tolerances(check_scripted_vs_eager)) if check_batched_vs_unbatched: _check_kernel_batched_vs_unbatched(kernel, input, *args, **kwargs, **_to_tolerances(check_batched_vs_unbatched)) def _check_dispatcher_scripted_smoke(dispatcher, input, *args, **kwargs): """Checks if the dispatcher can be scripted and the scripted version can be called without error.""" if not isinstance(input, datapoints.Image): return dispatcher_scripted = _script(dispatcher) with ignore_jit_no_profile_information_warning(): dispatcher_scripted(input.as_subclass(torch.Tensor), *args, **kwargs) def _check_dispatcher_dispatch(dispatcher, kernel, input, *args, **kwargs): """Checks if the dispatcher correctly dispatches the input to the corresponding kernel and that the input type is preserved in doing so. For bounding boxes also checks that the format is preserved. """ if isinstance(input, datapoints._datapoint.Datapoint): # Due to our complex dispatch architecture for datapoints, we cannot spy on the kernel directly, # but rather have to patch the `Datapoint.__F` attribute to contain the spied on kernel. spy = mock.MagicMock(wraps=kernel, name=kernel.__name__) with mock.patch.object(F, kernel.__name__, spy): # Due to Python's name mangling, the `Datapoint.__F` attribute is only accessible from inside the class. # Since that is not the case here, we need to prefix f"_{cls.__name__}" # See https://docs.python.org/3/tutorial/classes.html#private-variables for details with mock.patch.object(datapoints._datapoint.Datapoint, "_Datapoint__F", new=F): output = dispatcher(input, *args, **kwargs) spy.assert_called_once() else: with mock.patch(f"{dispatcher.__module__}.{kernel.__name__}", wraps=kernel) as spy: output = dispatcher(input, *args, **kwargs) spy.assert_called_once() assert isinstance(output, type(input)) if isinstance(input, datapoints.BoundingBoxes): assert output.format == input.format def check_dispatcher( dispatcher, kernel, input, *args, check_scripted_smoke=True, check_dispatch=True, **kwargs, ): with mock.patch("torch._C._log_api_usage_once", wraps=torch._C._log_api_usage_once) as spy: dispatcher(input, *args, **kwargs) spy.assert_any_call(f"{dispatcher.__module__}.{dispatcher.__name__}") unknown_input = object() with pytest.raises(TypeError, match=re.escape(str(type(unknown_input)))): dispatcher(unknown_input, *args, **kwargs) if check_scripted_smoke: _check_dispatcher_scripted_smoke(dispatcher, input, *args, **kwargs) if check_dispatch: _check_dispatcher_dispatch(dispatcher, kernel, input, *args, **kwargs) def _check_dispatcher_kernel_signature_match(dispatcher, *, kernel, input_type): """Checks if the signature of the dispatcher matches the kernel signature.""" dispatcher_signature = inspect.signature(dispatcher) dispatcher_params = list(dispatcher_signature.parameters.values())[1:] kernel_signature = inspect.signature(kernel) kernel_params = list(kernel_signature.parameters.values())[1:] if issubclass(input_type, datapoints._datapoint.Datapoint): # We filter out metadata that is implicitly passed to the dispatcher through the input datapoint, but has to be # explicitly passed to the kernel. kernel_params = [param for param in kernel_params if param.name not in input_type.__annotations__.keys()] dispatcher_params = iter(dispatcher_params) for dispatcher_param, kernel_param in zip(dispatcher_params, kernel_params): try: # In general, the dispatcher parameters are a superset of the kernel parameters. Thus, we filter out # dispatcher parameters that have no kernel equivalent while keeping the order intact. while dispatcher_param.name != kernel_param.name: dispatcher_param = next(dispatcher_params) except StopIteration: raise AssertionError( f"Parameter `{kernel_param.name}` of kernel `{kernel.__name__}` " f"has no corresponding parameter on the dispatcher `{dispatcher.__name__}`." ) from None if issubclass(input_type, PIL.Image.Image): # PIL kernels often have more correct annotations, since they are not limited by JIT. Thus, we don't check # them in the first place. dispatcher_param._annotation = kernel_param._annotation = inspect.Parameter.empty assert dispatcher_param == kernel_param def _check_dispatcher_datapoint_signature_match(dispatcher): """Checks if the signature of the dispatcher matches the corresponding method signature on the Datapoint class.""" dispatcher_signature = inspect.signature(dispatcher) dispatcher_params = list(dispatcher_signature.parameters.values())[1:] datapoint_method = getattr(datapoints._datapoint.Datapoint, dispatcher.__name__) datapoint_signature = inspect.signature(datapoint_method) datapoint_params = list(datapoint_signature.parameters.values())[1:] # Some annotations in the `datapoints._datapoint` module # are stored as strings. The block below makes them concrete again (non-strings), so they can be compared to the # natively concrete dispatcher annotations. datapoint_annotations = get_type_hints(datapoint_method) for param in datapoint_params: param._annotation = datapoint_annotations[param.name] assert dispatcher_params == datapoint_params def check_dispatcher_signatures_match(dispatcher, *, kernel, input_type): _check_dispatcher_kernel_signature_match(dispatcher, kernel=kernel, input_type=input_type) _check_dispatcher_datapoint_signature_match(dispatcher) def _check_transform_v1_compatibility(transform, input): """If the transform defines the ``_v1_transform_cls`` attribute, checks if the transform has a public, static ``get_params`` method, is scriptable, and the scripted version can be called without error.""" if transform._v1_transform_cls is None: return if type(input) is not torch.Tensor: return if hasattr(transform._v1_transform_cls, "get_params"): assert type(transform).get_params is transform._v1_transform_cls.get_params scripted_transform = _script(transform) with ignore_jit_no_profile_information_warning(): scripted_transform(input) def check_transform(transform_cls, input, *args, **kwargs): transform = transform_cls(*args, **kwargs) output = transform(input) assert isinstance(output, type(input)) if isinstance(input, datapoints.BoundingBoxes): assert output.format == input.format _check_transform_v1_compatibility(transform, input) def transform_cls_to_functional(transform_cls, **transform_specific_kwargs): def wrapper(input, *args, **kwargs): transform = transform_cls(*args, **transform_specific_kwargs, **kwargs) return transform(input) wrapper.__name__ = transform_cls.__name__ return wrapper def param_value_parametrization(**kwargs): """Helper function to turn @pytest.mark.parametrize( ("param", "value"), ("a", 1), ("a", 2), ("a", 3), ("b", -1.0) ("b", 1.0) ) into @param_value_parametrization(a=[1, 2, 3], b=[-1.0, 1.0]) """ return pytest.mark.parametrize( ("param", "value"), [(param, value) for param, values in kwargs.items() for value in values], ) def adapt_fill(value, *, dtype): """Adapt fill values in the range [0.0, 1.0] to the value range of the dtype""" if value is None: return value max_value = get_max_value(dtype) if isinstance(value, (int, float)): return type(value)(value * max_value) elif isinstance(value, (list, tuple)): return type(value)(type(v)(v * max_value) for v in value) else: raise ValueError(f"fill should be an int or float, or a list or tuple of the former, but got '{value}'.") EXHAUSTIVE_TYPE_FILLS = [ None, 1, 0.5, [1], [0.2], (0,), (0.7,), [1, 0, 1], [0.1, 0.2, 0.3], (0, 1, 0), (0.9, 0.234, 0.314), ] CORRECTNESS_FILLS = [ v for v in EXHAUSTIVE_TYPE_FILLS if v is None or isinstance(v, float) or (isinstance(v, list) and len(v) > 1) ] # We cannot use `list(transforms.InterpolationMode)` here, since it includes some PIL-only ones as well INTERPOLATION_MODES = [ transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.NEAREST_EXACT, transforms.InterpolationMode.BILINEAR, transforms.InterpolationMode.BICUBIC, ] @contextlib.contextmanager def assert_warns_antialias_default_value(): with pytest.warns(UserWarning, match="The default value of the antialias parameter of all the resizing transforms"): yield def reference_affine_bounding_boxes_helper(bounding_boxes, *, format, canvas_size, affine_matrix): def transform(bbox): # Go to float before converting to prevent precision loss in case of CXCYWH -> XYXY and W or H is 1 in_dtype = bbox.dtype if not torch.is_floating_point(bbox): bbox = bbox.float() bbox_xyxy = F.convert_format_bounding_boxes( bbox.as_subclass(torch.Tensor), old_format=format, new_format=datapoints.BoundingBoxFormat.XYXY, inplace=True, ) points = np.array( [ [bbox_xyxy[0].item(), bbox_xyxy[1].item(), 1.0], [bbox_xyxy[2].item(), bbox_xyxy[1].item(), 1.0], [bbox_xyxy[0].item(), bbox_xyxy[3].item(), 1.0], [bbox_xyxy[2].item(), bbox_xyxy[3].item(), 1.0], ] ) transformed_points = np.matmul(points, affine_matrix.T) out_bbox = torch.tensor( [ np.min(transformed_points[:, 0]).item(), np.min(transformed_points[:, 1]).item(), np.max(transformed_points[:, 0]).item(), np.max(transformed_points[:, 1]).item(), ], dtype=bbox_xyxy.dtype, ) out_bbox = F.convert_format_bounding_boxes( out_bbox, old_format=datapoints.BoundingBoxFormat.XYXY, new_format=format, inplace=True ) # It is important to clamp before casting, especially for CXCYWH format, dtype=int64 out_bbox = F.clamp_bounding_boxes(out_bbox, format=format, canvas_size=canvas_size) out_bbox = out_bbox.to(dtype=in_dtype) return out_bbox return torch.stack([transform(b) for b in bounding_boxes.reshape(-1, 4).unbind()]).reshape(bounding_boxes.shape) class TestResize: INPUT_SIZE = (17, 11) OUTPUT_SIZES = [17, [17], (17,), [12, 13], (12, 13)] def _make_max_size_kwarg(self, *, use_max_size, size): if use_max_size: if not (isinstance(size, int) or len(size) == 1): # This would result in an `ValueError` return None max_size = (size if isinstance(size, int) else size[0]) + 1 else: max_size = None return dict(max_size=max_size) def _compute_output_size(self, *, input_size, size, max_size): if not (isinstance(size, int) or len(size) == 1): return tuple(size) if not isinstance(size, int): size = size[0] old_height, old_width = input_size ratio = old_width / old_height if ratio > 1: new_height = size new_width = int(ratio * new_height) else: new_width = size new_height = int(new_width / ratio) if max_size is not None and max(new_height, new_width) > max_size: # Need to recompute the aspect ratio, since it might have changed due to rounding ratio = new_width / new_height if ratio > 1: new_width = max_size new_height = int(new_width / ratio) else: new_height = max_size new_width = int(new_height * ratio) return new_height, new_width @pytest.mark.parametrize("size", OUTPUT_SIZES) @pytest.mark.parametrize("interpolation", INTERPOLATION_MODES) @pytest.mark.parametrize("use_max_size", [True, False]) @pytest.mark.parametrize("antialias", [True, False]) @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8]) @pytest.mark.parametrize("device", cpu_and_cuda()) def test_kernel_image_tensor(self, size, interpolation, use_max_size, antialias, dtype, device): if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)): return # In contrast to CPU, there is no native `InterpolationMode.BICUBIC` implementation for uint8 images on CUDA. # Internally, it uses the float path. Thus, we need to test with an enormous tolerance here to account for that. atol = 30 if transforms.InterpolationMode.BICUBIC and dtype is torch.uint8 else 1 check_cuda_vs_cpu_tolerances = dict(rtol=0, atol=atol / 255 if dtype.is_floating_point else atol) check_kernel( F.resize_image_tensor, make_image(self.INPUT_SIZE, dtype=dtype, device=device), size=size, interpolation=interpolation, **max_size_kwarg, antialias=antialias, check_cuda_vs_cpu=check_cuda_vs_cpu_tolerances, check_scripted_vs_eager=not isinstance(size, int), ) @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat)) @pytest.mark.parametrize("size", OUTPUT_SIZES) @pytest.mark.parametrize("use_max_size", [True, False]) @pytest.mark.parametrize("dtype", [torch.float32, torch.int64]) @pytest.mark.parametrize("device", cpu_and_cuda()) def test_kernel_bounding_boxes(self, format, size, use_max_size, dtype, device): if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)): return bounding_boxes = make_bounding_box( format=format, canvas_size=self.INPUT_SIZE, dtype=dtype, device=device, ) check_kernel( F.resize_bounding_boxes, bounding_boxes, canvas_size=bounding_boxes.canvas_size, size=size, **max_size_kwarg, check_scripted_vs_eager=not isinstance(size, int), ) @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask]) def test_kernel_mask(self, make_mask): check_kernel(F.resize_mask, make_mask(self.INPUT_SIZE), size=self.OUTPUT_SIZES[-1]) def test_kernel_video(self): check_kernel(F.resize_video, make_video(self.INPUT_SIZE), size=self.OUTPUT_SIZES[-1], antialias=True) @pytest.mark.parametrize("size", OUTPUT_SIZES) @pytest.mark.parametrize( ("kernel", "make_input"), [ (F.resize_image_tensor, make_image_tensor), (F.resize_image_pil, make_image_pil), (F.resize_image_tensor, make_image), (F.resize_bounding_boxes, make_bounding_box), (F.resize_mask, make_segmentation_mask), (F.resize_video, make_video), ], ) def test_dispatcher(self, size, kernel, make_input): check_dispatcher( F.resize, kernel, make_input(self.INPUT_SIZE), size=size, antialias=True, check_scripted_smoke=not isinstance(size, int), ) @pytest.mark.parametrize( ("kernel", "input_type"), [ (F.resize_image_tensor, torch.Tensor), (F.resize_image_pil, PIL.Image.Image), (F.resize_image_tensor, datapoints.Image), (F.resize_bounding_boxes, datapoints.BoundingBoxes), (F.resize_mask, datapoints.Mask), (F.resize_video, datapoints.Video), ], ) def test_dispatcher_signature(self, kernel, input_type): check_dispatcher_signatures_match(F.resize, kernel=kernel, input_type=input_type) @pytest.mark.parametrize("size", OUTPUT_SIZES) @pytest.mark.parametrize("device", cpu_and_cuda()) @pytest.mark.parametrize( "make_input", [ make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_detection_mask, make_video, ], ) def test_transform(self, size, device, make_input): check_transform(transforms.Resize, make_input(self.INPUT_SIZE, device=device), size=size, antialias=True) def _check_output_size(self, input, output, *, size, max_size): assert tuple(F.get_size(output)) == self._compute_output_size( input_size=F.get_size(input), size=size, max_size=max_size ) @pytest.mark.parametrize("size", OUTPUT_SIZES) # `InterpolationMode.NEAREST` is modeled after the buggy `INTER_NEAREST` interpolation of CV2. # The PIL equivalent of `InterpolationMode.NEAREST` is `InterpolationMode.NEAREST_EXACT` @pytest.mark.parametrize("interpolation", set(INTERPOLATION_MODES) - {transforms.InterpolationMode.NEAREST}) @pytest.mark.parametrize("use_max_size", [True, False]) @pytest.mark.parametrize("fn", [F.resize, transform_cls_to_functional(transforms.Resize)]) def test_image_correctness(self, size, interpolation, use_max_size, fn): if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)): return image = make_image(self.INPUT_SIZE, dtype=torch.uint8) actual = fn(image, size=size, interpolation=interpolation, **max_size_kwarg, antialias=True) expected = F.to_image_tensor( F.resize(F.to_image_pil(image), size=size, interpolation=interpolation, **max_size_kwarg) ) self._check_output_size(image, actual, size=size, **max_size_kwarg) torch.testing.assert_close(actual, expected, atol=1, rtol=0) def _reference_resize_bounding_boxes(self, bounding_boxes, *, size, max_size=None): old_height, old_width = bounding_boxes.canvas_size new_height, new_width = self._compute_output_size( input_size=bounding_boxes.canvas_size, size=size, max_size=max_size ) if (old_height, old_width) == (new_height, new_width): return bounding_boxes affine_matrix = np.array( [ [new_width / old_width, 0, 0], [0, new_height / old_height, 0], ], dtype="float64" if bounding_boxes.dtype == torch.float64 else "float32", ) expected_bboxes = reference_affine_bounding_boxes_helper( bounding_boxes, format=bounding_boxes.format, canvas_size=(new_height, new_width), affine_matrix=affine_matrix, ) return datapoints.BoundingBoxes.wrap_like(bounding_boxes, expected_bboxes, canvas_size=(new_height, new_width)) @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat)) @pytest.mark.parametrize("size", OUTPUT_SIZES) @pytest.mark.parametrize("use_max_size", [True, False]) @pytest.mark.parametrize("fn", [F.resize, transform_cls_to_functional(transforms.Resize)]) def test_bounding_boxes_correctness(self, format, size, use_max_size, fn): if not (max_size_kwarg := self._make_max_size_kwarg(use_max_size=use_max_size, size=size)): return bounding_boxes = make_bounding_box(format=format, canvas_size=self.INPUT_SIZE) actual = fn(bounding_boxes, size=size, **max_size_kwarg) expected = self._reference_resize_bounding_boxes(bounding_boxes, size=size, **max_size_kwarg) self._check_output_size(bounding_boxes, actual, size=size, **max_size_kwarg) torch.testing.assert_close(actual, expected) @pytest.mark.parametrize("interpolation", set(transforms.InterpolationMode) - set(INTERPOLATION_MODES)) @pytest.mark.parametrize( "make_input", [make_image_tensor, make_image_pil, make_image, make_video], ) def test_pil_interpolation_compat_smoke(self, interpolation, make_input): input = make_input(self.INPUT_SIZE) with ( contextlib.nullcontext() if isinstance(input, PIL.Image.Image) # This error is triggered in PyTorch core else pytest.raises(NotImplementedError, match=f"got {interpolation.value.lower()}") ): F.resize( input, size=self.OUTPUT_SIZES[0], interpolation=interpolation, ) def test_dispatcher_pil_antialias_warning(self): with pytest.warns(UserWarning, match="Anti-alias option is always applied for PIL Image input"): F.resize(make_image_pil(self.INPUT_SIZE), size=self.OUTPUT_SIZES[0], antialias=False) @pytest.mark.parametrize("size", OUTPUT_SIZES) @pytest.mark.parametrize( "make_input", [ make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_detection_mask, make_video, ], ) def test_max_size_error(self, size, make_input): if isinstance(size, int) or len(size) == 1: max_size = (size if isinstance(size, int) else size[0]) - 1 match = "must be strictly greater than the requested size" else: # value can be anything other than None max_size = -1 match = "size should be an int or a sequence of length 1" with pytest.raises(ValueError, match=match): F.resize(make_input(self.INPUT_SIZE), size=size, max_size=max_size, antialias=True) @pytest.mark.parametrize("interpolation", INTERPOLATION_MODES) @pytest.mark.parametrize( "make_input", [make_image_tensor, make_image, make_video], ) def test_antialias_warning(self, interpolation, make_input): with ( assert_warns_antialias_default_value() if interpolation in {transforms.InterpolationMode.BILINEAR, transforms.InterpolationMode.BICUBIC} else assert_no_warnings() ): F.resize( make_input(self.INPUT_SIZE), size=self.OUTPUT_SIZES[0], interpolation=interpolation, ) @pytest.mark.parametrize("interpolation", INTERPOLATION_MODES) @pytest.mark.parametrize( "make_input", [make_image_tensor, make_image_pil, make_image, make_video], ) def test_interpolation_int(self, interpolation, make_input): input = make_input(self.INPUT_SIZE) # `InterpolationMode.NEAREST_EXACT` has no proper corresponding integer equivalent. Internally, we map it to # `0` to be the same as `InterpolationMode.NEAREST` for PIL. However, for the tensor backend there is a # difference and thus we don't test it here. if isinstance(input, torch.Tensor) and interpolation is transforms.InterpolationMode.NEAREST_EXACT: return expected = F.resize(input, size=self.OUTPUT_SIZES[0], interpolation=interpolation, antialias=True) actual = F.resize( input, size=self.OUTPUT_SIZES[0], interpolation=pil_modes_mapping[interpolation], antialias=True ) assert_equal(actual, expected) def test_transform_unknown_size_error(self): with pytest.raises(ValueError, match="size can either be an integer or a list or tuple of one or two integers"): transforms.Resize(size=object()) @pytest.mark.parametrize( "size", [min(INPUT_SIZE), [min(INPUT_SIZE)], (min(INPUT_SIZE),), list(INPUT_SIZE), tuple(INPUT_SIZE)] ) @pytest.mark.parametrize( "make_input", [ make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_detection_mask, make_video, ], ) def test_noop(self, size, make_input): input = make_input(self.INPUT_SIZE) output = F.resize(input, size=F.get_size(input), antialias=True) # This identity check is not a requirement. It is here to avoid breaking the behavior by accident. If there # is a good reason to break this, feel free to downgrade to an equality check. if isinstance(input, datapoints._datapoint.Datapoint): # We can't test identity directly, since that checks for the identity of the Python object. Since all # datapoints unwrap before a kernel and wrap again afterwards, the Python object changes. Thus, we check # that the underlying storage is the same assert output.data_ptr() == input.data_ptr() else: assert output is input @pytest.mark.parametrize( "make_input", [ make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_detection_mask, make_video, ], ) def test_no_regression_5405(self, make_input): # Checks that `max_size` is not ignored if `size == small_edge_size` # See https://github.com/pytorch/vision/issues/5405 input = make_input(self.INPUT_SIZE) size = min(F.get_size(input)) max_size = size + 1 output = F.resize(input, size=size, max_size=max_size, antialias=True) assert max(F.get_size(output)) == max_size class TestHorizontalFlip: @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8]) @pytest.mark.parametrize("device", cpu_and_cuda()) def test_kernel_image_tensor(self, dtype, device): check_kernel(F.horizontal_flip_image_tensor, make_image(dtype=dtype, device=device)) @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat)) @pytest.mark.parametrize("dtype", [torch.float32, torch.int64]) @pytest.mark.parametrize("device", cpu_and_cuda()) def test_kernel_bounding_boxes(self, format, dtype, device): bounding_boxes = make_bounding_box(format=format, dtype=dtype, device=device) check_kernel( F.horizontal_flip_bounding_boxes, bounding_boxes, format=format, canvas_size=bounding_boxes.canvas_size, ) @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask]) def test_kernel_mask(self, make_mask): check_kernel(F.horizontal_flip_mask, make_mask()) def test_kernel_video(self): check_kernel(F.horizontal_flip_video, make_video()) @pytest.mark.parametrize( ("kernel", "make_input"), [ (F.horizontal_flip_image_tensor, make_image_tensor), (F.horizontal_flip_image_pil, make_image_pil), (F.horizontal_flip_image_tensor, make_image), (F.horizontal_flip_bounding_boxes, make_bounding_box), (F.horizontal_flip_mask, make_segmentation_mask), (F.horizontal_flip_video, make_video), ], ) def test_dispatcher(self, kernel, make_input): check_dispatcher(F.horizontal_flip, kernel, make_input()) @pytest.mark.parametrize( ("kernel", "input_type"), [ (F.horizontal_flip_image_tensor, torch.Tensor), (F.horizontal_flip_image_pil, PIL.Image.Image), (F.horizontal_flip_image_tensor, datapoints.Image), (F.horizontal_flip_bounding_boxes, datapoints.BoundingBoxes), (F.horizontal_flip_mask, datapoints.Mask), (F.horizontal_flip_video, datapoints.Video), ], ) def test_dispatcher_signature(self, kernel, input_type): check_dispatcher_signatures_match(F.horizontal_flip, kernel=kernel, input_type=input_type) @pytest.mark.parametrize( "make_input", [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video], ) @pytest.mark.parametrize("device", cpu_and_cuda()) def test_transform(self, make_input, device): check_transform(transforms.RandomHorizontalFlip, make_input(device=device), p=1) @pytest.mark.parametrize( "fn", [F.horizontal_flip, transform_cls_to_functional(transforms.RandomHorizontalFlip, p=1)] ) def test_image_correctness(self, fn): image = make_image(dtype=torch.uint8, device="cpu") actual = fn(image) expected = F.to_image_tensor(F.horizontal_flip(F.to_image_pil(image))) torch.testing.assert_close(actual, expected) def _reference_horizontal_flip_bounding_boxes(self, bounding_boxes): affine_matrix = np.array( [ [-1, 0, bounding_boxes.canvas_size[1]], [0, 1, 0], ], dtype="float64" if bounding_boxes.dtype == torch.float64 else "float32", ) expected_bboxes = reference_affine_bounding_boxes_helper( bounding_boxes, format=bounding_boxes.format, canvas_size=bounding_boxes.canvas_size, affine_matrix=affine_matrix, ) return datapoints.BoundingBoxes.wrap_like(bounding_boxes, expected_bboxes) @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat)) @pytest.mark.parametrize( "fn", [F.horizontal_flip, transform_cls_to_functional(transforms.RandomHorizontalFlip, p=1)] ) def test_bounding_boxes_correctness(self, format, fn): bounding_boxes = make_bounding_box(format=format) actual = fn(bounding_boxes) expected = self._reference_horizontal_flip_bounding_boxes(bounding_boxes) torch.testing.assert_close(actual, expected) @pytest.mark.parametrize( "make_input", [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video], ) @pytest.mark.parametrize("device", cpu_and_cuda()) def test_transform_noop(self, make_input, device): input = make_input(device=device) transform = transforms.RandomHorizontalFlip(p=0) output = transform(input) assert_equal(output, input) class TestAffine: _EXHAUSTIVE_TYPE_AFFINE_KWARGS = dict( # float, int angle=[-10.9, 18], # two-list of float, two-list of int, two-tuple of float, two-tuple of int translate=[[6.3, -0.6], [1, -3], (16.6, -6.6), (-2, 4)], # float scale=[0.5], # float, int, # one-list of float, one-list of int, one-tuple of float, one-tuple of int # two-list of float, two-list of int, two-tuple of float, two-tuple of int shear=[35.6, 38, [-37.7], [-23], (5.3,), (-52,), [5.4, 21.8], [-47, 51], (-11.2, 36.7), (8, -53)], # None # two-list of float, two-list of int, two-tuple of float, two-tuple of int center=[None, [1.2, 4.9], [-3, 1], (2.5, -4.7), (3, 2)], ) # The special case for shear makes sure we pick a value that is supported while JIT scripting _MINIMAL_AFFINE_KWARGS = { k: vs[0] if k != "shear" else next(v for v in vs if isinstance(v, list)) for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items() } _CORRECTNESS_AFFINE_KWARGS = { k: [v for v in vs if v is None or isinstance(v, float) or (isinstance(v, list) and len(v) > 1)] for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items() } _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES = dict( degrees=[30, (-15, 20)], translate=[None, (0.5, 0.5)], scale=[None, (0.75, 1.25)], shear=[None, (12, 30, -17, 5), 10, (-5, 12)], ) _CORRECTNESS_TRANSFORM_AFFINE_RANGES = { k: next(v for v in vs if v is not None) for k, vs in _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES.items() } def _check_kernel(self, kernel, input, *args, **kwargs): kwargs_ = self._MINIMAL_AFFINE_KWARGS.copy() kwargs_.update(kwargs) check_kernel(kernel, input, *args, **kwargs_) @param_value_parametrization( angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"], translate=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["translate"], shear=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["shear"], center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"], interpolation=[transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR], fill=EXHAUSTIVE_TYPE_FILLS, ) @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8]) @pytest.mark.parametrize("device", cpu_and_cuda()) def test_kernel_image_tensor(self, param, value, dtype, device): if param == "fill": value = adapt_fill(value, dtype=dtype) self._check_kernel( F.affine_image_tensor, make_image(dtype=dtype, device=device), **{param: value}, check_scripted_vs_eager=not (param in {"shear", "fill"} and isinstance(value, (int, float))), check_cuda_vs_cpu=dict(atol=1, rtol=0) if dtype is torch.uint8 and param == "interpolation" and value is transforms.InterpolationMode.BILINEAR else True, ) @param_value_parametrization( angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"], translate=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["translate"], shear=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["shear"], center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"], ) @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat)) @pytest.mark.parametrize("dtype", [torch.float32, torch.int64]) @pytest.mark.parametrize("device", cpu_and_cuda()) def test_kernel_bounding_boxes(self, param, value, format, dtype, device): bounding_boxes = make_bounding_box(format=format, dtype=dtype, device=device) self._check_kernel( F.affine_bounding_boxes, bounding_boxes, format=format, canvas_size=bounding_boxes.canvas_size, **{param: value}, check_scripted_vs_eager=not (param == "shear" and isinstance(value, (int, float))), ) @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask]) def test_kernel_mask(self, make_mask): self._check_kernel(F.affine_mask, make_mask()) def test_kernel_video(self): self._check_kernel(F.affine_video, make_video()) @pytest.mark.parametrize( ("kernel", "make_input"), [ (F.affine_image_tensor, make_image_tensor), (F.affine_image_pil, make_image_pil), (F.affine_image_tensor, make_image), (F.affine_bounding_boxes, make_bounding_box), (F.affine_mask, make_segmentation_mask), (F.affine_video, make_video), ], ) def test_dispatcher(self, kernel, make_input): check_dispatcher(F.affine, kernel, make_input(), **self._MINIMAL_AFFINE_KWARGS) @pytest.mark.parametrize( ("kernel", "input_type"), [ (F.affine_image_tensor, torch.Tensor), (F.affine_image_pil, PIL.Image.Image), (F.affine_image_tensor, datapoints.Image), (F.affine_bounding_boxes, datapoints.BoundingBoxes), (F.affine_mask, datapoints.Mask), (F.affine_video, datapoints.Video), ], ) def test_dispatcher_signature(self, kernel, input_type): check_dispatcher_signatures_match(F.affine, kernel=kernel, input_type=input_type) @pytest.mark.parametrize( "make_input", [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video], ) @pytest.mark.parametrize("device", cpu_and_cuda()) def test_transform(self, make_input, device): input = make_input(device=device) check_transform(transforms.RandomAffine, input, **self._CORRECTNESS_TRANSFORM_AFFINE_RANGES) @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"]) @pytest.mark.parametrize("translate", _CORRECTNESS_AFFINE_KWARGS["translate"]) @pytest.mark.parametrize("scale", _CORRECTNESS_AFFINE_KWARGS["scale"]) @pytest.mark.parametrize("shear", _CORRECTNESS_AFFINE_KWARGS["shear"]) @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"]) @pytest.mark.parametrize( "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR] ) @pytest.mark.parametrize("fill", CORRECTNESS_FILLS) def test_functional_image_correctness(self, angle, translate, scale, shear, center, interpolation, fill): image = make_image(dtype=torch.uint8, device="cpu") fill = adapt_fill(fill, dtype=torch.uint8) actual = F.affine( image, angle=angle, translate=translate, scale=scale, shear=shear, center=center, interpolation=interpolation, fill=fill, ) expected = F.to_image_tensor( F.affine( F.to_image_pil(image), angle=angle, translate=translate, scale=scale, shear=shear, center=center, interpolation=interpolation, fill=fill, ) ) mae = (actual.float() - expected.float()).abs().mean() assert mae < 2 if interpolation is transforms.InterpolationMode.NEAREST else 8 @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"]) @pytest.mark.parametrize( "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR] ) @pytest.mark.parametrize("fill", CORRECTNESS_FILLS) @pytest.mark.parametrize("seed", list(range(5))) def test_transform_image_correctness(self, center, interpolation, fill, seed): image = make_image(dtype=torch.uint8, device="cpu") fill = adapt_fill(fill, dtype=torch.uint8) transform = transforms.RandomAffine( **self._CORRECTNESS_TRANSFORM_AFFINE_RANGES, center=center, interpolation=interpolation, fill=fill ) torch.manual_seed(seed) actual = transform(image) torch.manual_seed(seed) expected = F.to_image_tensor(transform(F.to_image_pil(image))) mae = (actual.float() - expected.float()).abs().mean() assert mae < 2 if interpolation is transforms.InterpolationMode.NEAREST else 8 def _compute_affine_matrix(self, *, angle, translate, scale, shear, center): rot = math.radians(angle) cx, cy = center tx, ty = translate sx, sy = [math.radians(s) for s in ([shear, 0.0] if isinstance(shear, (int, float)) else shear)] c_matrix = np.array([[1, 0, cx], [0, 1, cy], [0, 0, 1]]) t_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]]) c_matrix_inv = np.linalg.inv(c_matrix) rs_matrix = np.array( [ [scale * math.cos(rot), -scale * math.sin(rot), 0], [scale * math.sin(rot), scale * math.cos(rot), 0], [0, 0, 1], ] ) shear_x_matrix = np.array([[1, -math.tan(sx), 0], [0, 1, 0], [0, 0, 1]]) shear_y_matrix = np.array([[1, 0, 0], [-math.tan(sy), 1, 0], [0, 0, 1]]) rss_matrix = np.matmul(rs_matrix, np.matmul(shear_y_matrix, shear_x_matrix)) true_matrix = np.matmul(t_matrix, np.matmul(c_matrix, np.matmul(rss_matrix, c_matrix_inv))) return true_matrix def _reference_affine_bounding_boxes(self, bounding_boxes, *, angle, translate, scale, shear, center): if center is None: center = [s * 0.5 for s in bounding_boxes.canvas_size[::-1]] affine_matrix = self._compute_affine_matrix( angle=angle, translate=translate, scale=scale, shear=shear, center=center ) affine_matrix = affine_matrix[:2, :] expected_bboxes = reference_affine_bounding_boxes_helper( bounding_boxes, format=bounding_boxes.format, canvas_size=bounding_boxes.canvas_size, affine_matrix=affine_matrix, ) return expected_bboxes @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat)) @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"]) @pytest.mark.parametrize("translate", _CORRECTNESS_AFFINE_KWARGS["translate"]) @pytest.mark.parametrize("scale", _CORRECTNESS_AFFINE_KWARGS["scale"]) @pytest.mark.parametrize("shear", _CORRECTNESS_AFFINE_KWARGS["shear"]) @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"]) def test_functional_bounding_boxes_correctness(self, format, angle, translate, scale, shear, center): bounding_boxes = make_bounding_box(format=format) actual = F.affine( bounding_boxes, angle=angle, translate=translate, scale=scale, shear=shear, center=center, ) expected = self._reference_affine_bounding_boxes( bounding_boxes, angle=angle, translate=translate, scale=scale, shear=shear, center=center, ) torch.testing.assert_close(actual, expected) @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat)) @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"]) @pytest.mark.parametrize("seed", list(range(5))) def test_transform_bounding_boxes_correctness(self, format, center, seed): bounding_boxes = make_bounding_box(format=format) transform = transforms.RandomAffine(**self._CORRECTNESS_TRANSFORM_AFFINE_RANGES, center=center) torch.manual_seed(seed) params = transform._get_params([bounding_boxes]) torch.manual_seed(seed) actual = transform(bounding_boxes) expected = self._reference_affine_bounding_boxes(bounding_boxes, **params, center=center) torch.testing.assert_close(actual, expected) @pytest.mark.parametrize("degrees", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["degrees"]) @pytest.mark.parametrize("translate", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["translate"]) @pytest.mark.parametrize("scale", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["scale"]) @pytest.mark.parametrize("shear", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["shear"]) @pytest.mark.parametrize("seed", list(range(10))) def test_transform_get_params_bounds(self, degrees, translate, scale, shear, seed): image = make_image() height, width = F.get_size(image) transform = transforms.RandomAffine(degrees=degrees, translate=translate, scale=scale, shear=shear) torch.manual_seed(seed) params = transform._get_params([image]) if isinstance(degrees, (int, float)): assert -degrees <= params["angle"] <= degrees else: assert degrees[0] <= params["angle"] <= degrees[1] if translate is not None: width_max = int(round(translate[0] * width)) height_max = int(round(translate[1] * height)) assert -width_max <= params["translate"][0] <= width_max assert -height_max <= params["translate"][1] <= height_max else: assert params["translate"] == (0, 0) if scale is not None: assert scale[0] <= params["scale"] <= scale[1] else: assert params["scale"] == 1.0 if shear is not None: if isinstance(shear, (int, float)): assert -shear <= params["shear"][0] <= shear assert params["shear"][1] == 0.0 elif len(shear) == 2: assert shear[0] <= params["shear"][0] <= shear[1] assert params["shear"][1] == 0.0 elif len(shear) == 4: assert shear[0] <= params["shear"][0] <= shear[1] assert shear[2] <= params["shear"][1] <= shear[3] else: assert params["shear"] == (0, 0) @pytest.mark.parametrize("param", ["degrees", "translate", "scale", "shear", "center"]) @pytest.mark.parametrize("value", [0, [0], [0, 0, 0]]) def test_transform_sequence_len_errors(self, param, value): if param in {"degrees", "shear"} and not isinstance(value, list): return kwargs = {param: value} if param != "degrees": kwargs["degrees"] = 0 with pytest.raises( ValueError if isinstance(value, list) else TypeError, match=f"{param} should be a sequence of length 2" ): transforms.RandomAffine(**kwargs) def test_transform_negative_degrees_error(self): with pytest.raises(ValueError, match="If degrees is a single number, it must be positive"): transforms.RandomAffine(degrees=-1) @pytest.mark.parametrize("translate", [[-1, 0], [2, 0], [-1, 2]]) def test_transform_translate_range_error(self, translate): with pytest.raises(ValueError, match="translation values should be between 0 and 1"): transforms.RandomAffine(degrees=0, translate=translate) @pytest.mark.parametrize("scale", [[-1, 0], [0, -1], [-1, -1]]) def test_transform_scale_range_error(self, scale): with pytest.raises(ValueError, match="scale values should be positive"): transforms.RandomAffine(degrees=0, scale=scale) def test_transform_negative_shear_error(self): with pytest.raises(ValueError, match="If shear is a single number, it must be positive"): transforms.RandomAffine(degrees=0, shear=-1) def test_transform_unknown_fill_error(self): with pytest.raises(TypeError, match="Got inappropriate fill arg"): transforms.RandomAffine(degrees=0, fill="fill") class TestVerticalFlip: @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8]) @pytest.mark.parametrize("device", cpu_and_cuda()) def test_kernel_image_tensor(self, dtype, device): check_kernel(F.vertical_flip_image_tensor, make_image(dtype=dtype, device=device)) @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat)) @pytest.mark.parametrize("dtype", [torch.float32, torch.int64]) @pytest.mark.parametrize("device", cpu_and_cuda()) def test_kernel_bounding_boxes(self, format, dtype, device): bounding_boxes = make_bounding_box(format=format, dtype=dtype, device=device) check_kernel( F.vertical_flip_bounding_boxes, bounding_boxes, format=format, canvas_size=bounding_boxes.canvas_size, ) @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask]) def test_kernel_mask(self, make_mask): check_kernel(F.vertical_flip_mask, make_mask()) def test_kernel_video(self): check_kernel(F.vertical_flip_video, make_video()) @pytest.mark.parametrize( ("kernel", "make_input"), [ (F.vertical_flip_image_tensor, make_image_tensor), (F.vertical_flip_image_pil, make_image_pil), (F.vertical_flip_image_tensor, make_image), (F.vertical_flip_bounding_boxes, make_bounding_box), (F.vertical_flip_mask, make_segmentation_mask), (F.vertical_flip_video, make_video), ], ) def test_dispatcher(self, kernel, make_input): check_dispatcher(F.vertical_flip, kernel, make_input()) @pytest.mark.parametrize( ("kernel", "input_type"), [ (F.vertical_flip_image_tensor, torch.Tensor), (F.vertical_flip_image_pil, PIL.Image.Image), (F.vertical_flip_image_tensor, datapoints.Image), (F.vertical_flip_bounding_boxes, datapoints.BoundingBoxes), (F.vertical_flip_mask, datapoints.Mask), (F.vertical_flip_video, datapoints.Video), ], ) def test_dispatcher_signature(self, kernel, input_type): check_dispatcher_signatures_match(F.vertical_flip, kernel=kernel, input_type=input_type) @pytest.mark.parametrize( "make_input", [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video], ) @pytest.mark.parametrize("device", cpu_and_cuda()) def test_transform(self, make_input, device): check_transform(transforms.RandomVerticalFlip, make_input(device=device), p=1) @pytest.mark.parametrize("fn", [F.vertical_flip, transform_cls_to_functional(transforms.RandomVerticalFlip, p=1)]) def test_image_correctness(self, fn): image = make_image(dtype=torch.uint8, device="cpu") actual = fn(image) expected = F.to_image_tensor(F.vertical_flip(F.to_image_pil(image))) torch.testing.assert_close(actual, expected) def _reference_vertical_flip_bounding_boxes(self, bounding_boxes): affine_matrix = np.array( [ [1, 0, 0], [0, -1, bounding_boxes.canvas_size[0]], ], dtype="float64" if bounding_boxes.dtype == torch.float64 else "float32", ) expected_bboxes = reference_affine_bounding_boxes_helper( bounding_boxes, format=bounding_boxes.format, canvas_size=bounding_boxes.canvas_size, affine_matrix=affine_matrix, ) return datapoints.BoundingBoxes.wrap_like(bounding_boxes, expected_bboxes) @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat)) @pytest.mark.parametrize("fn", [F.vertical_flip, transform_cls_to_functional(transforms.RandomVerticalFlip, p=1)]) def test_bounding_boxes_correctness(self, format, fn): bounding_boxes = make_bounding_box(format=format) actual = fn(bounding_boxes) expected = self._reference_vertical_flip_bounding_boxes(bounding_boxes) torch.testing.assert_close(actual, expected) @pytest.mark.parametrize( "make_input", [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video], ) @pytest.mark.parametrize("device", cpu_and_cuda()) def test_transform_noop(self, make_input, device): input = make_input(device=device) transform = transforms.RandomVerticalFlip(p=0) output = transform(input) assert_equal(output, input) class TestRotate: _EXHAUSTIVE_TYPE_AFFINE_KWARGS = dict( # float, int angle=[-10.9, 18], # None # two-list of float, two-list of int, two-tuple of float, two-tuple of int center=[None, [1.2, 4.9], [-3, 1], (2.5, -4.7), (3, 2)], ) _MINIMAL_AFFINE_KWARGS = {k: vs[0] for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items()} _CORRECTNESS_AFFINE_KWARGS = { k: [v for v in vs if v is None or isinstance(v, float) or isinstance(v, list)] for k, vs in _EXHAUSTIVE_TYPE_AFFINE_KWARGS.items() } _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES = dict( degrees=[30, (-15, 20)], ) _CORRECTNESS_TRANSFORM_AFFINE_RANGES = {k: vs[0] for k, vs in _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES.items()} @param_value_parametrization( angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"], interpolation=[transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR], expand=[False, True], center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"], fill=EXHAUSTIVE_TYPE_FILLS, ) @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8]) @pytest.mark.parametrize("device", cpu_and_cuda()) def test_kernel_image_tensor(self, param, value, dtype, device): kwargs = {param: value} if param != "angle": kwargs["angle"] = self._MINIMAL_AFFINE_KWARGS["angle"] check_kernel( F.rotate_image_tensor, make_image(dtype=dtype, device=device), **kwargs, check_scripted_vs_eager=not (param == "fill" and isinstance(value, (int, float))), ) @param_value_parametrization( angle=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["angle"], expand=[False, True], center=_EXHAUSTIVE_TYPE_AFFINE_KWARGS["center"], ) @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat)) @pytest.mark.parametrize("dtype", [torch.float32, torch.uint8]) @pytest.mark.parametrize("device", cpu_and_cuda()) def test_kernel_bounding_boxes(self, param, value, format, dtype, device): kwargs = {param: value} if param != "angle": kwargs["angle"] = self._MINIMAL_AFFINE_KWARGS["angle"] bounding_boxes = make_bounding_box(format=format, dtype=dtype, device=device) check_kernel( F.rotate_bounding_boxes, bounding_boxes, format=format, canvas_size=bounding_boxes.canvas_size, **kwargs, ) @pytest.mark.parametrize("make_mask", [make_segmentation_mask, make_detection_mask]) def test_kernel_mask(self, make_mask): check_kernel(F.rotate_mask, make_mask(), **self._MINIMAL_AFFINE_KWARGS) def test_kernel_video(self): check_kernel(F.rotate_video, make_video(), **self._MINIMAL_AFFINE_KWARGS) @pytest.mark.parametrize( ("kernel", "make_input"), [ (F.rotate_image_tensor, make_image_tensor), (F.rotate_image_pil, make_image_pil), (F.rotate_image_tensor, make_image), (F.rotate_bounding_boxes, make_bounding_box), (F.rotate_mask, make_segmentation_mask), (F.rotate_video, make_video), ], ) def test_dispatcher(self, kernel, make_input): check_dispatcher(F.rotate, kernel, make_input(), **self._MINIMAL_AFFINE_KWARGS) @pytest.mark.parametrize( ("kernel", "input_type"), [ (F.rotate_image_tensor, torch.Tensor), (F.rotate_image_pil, PIL.Image.Image), (F.rotate_image_tensor, datapoints.Image), (F.rotate_bounding_boxes, datapoints.BoundingBoxes), (F.rotate_mask, datapoints.Mask), (F.rotate_video, datapoints.Video), ], ) def test_dispatcher_signature(self, kernel, input_type): check_dispatcher_signatures_match(F.rotate, kernel=kernel, input_type=input_type) @pytest.mark.parametrize( "make_input", [make_image_tensor, make_image_pil, make_image, make_bounding_box, make_segmentation_mask, make_video], ) @pytest.mark.parametrize("device", cpu_and_cuda()) def test_transform(self, make_input, device): check_transform( transforms.RandomRotation, make_input(device=device), **self._CORRECTNESS_TRANSFORM_AFFINE_RANGES ) @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"]) @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"]) @pytest.mark.parametrize( "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR] ) @pytest.mark.parametrize("expand", [False, True]) @pytest.mark.parametrize("fill", CORRECTNESS_FILLS) def test_functional_image_correctness(self, angle, center, interpolation, expand, fill): image = make_image(dtype=torch.uint8, device="cpu") fill = adapt_fill(fill, dtype=torch.uint8) actual = F.rotate(image, angle=angle, center=center, interpolation=interpolation, expand=expand, fill=fill) expected = F.to_image_tensor( F.rotate( F.to_image_pil(image), angle=angle, center=center, interpolation=interpolation, expand=expand, fill=fill ) ) mae = (actual.float() - expected.float()).abs().mean() assert mae < 1 if interpolation is transforms.InterpolationMode.NEAREST else 6 @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"]) @pytest.mark.parametrize( "interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR] ) @pytest.mark.parametrize("expand", [False, True]) @pytest.mark.parametrize("fill", CORRECTNESS_FILLS) @pytest.mark.parametrize("seed", list(range(5))) def test_transform_image_correctness(self, center, interpolation, expand, fill, seed): image = make_image(dtype=torch.uint8, device="cpu") fill = adapt_fill(fill, dtype=torch.uint8) transform = transforms.RandomRotation( **self._CORRECTNESS_TRANSFORM_AFFINE_RANGES, center=center, interpolation=interpolation, expand=expand, fill=fill, ) torch.manual_seed(seed) actual = transform(image) torch.manual_seed(seed) expected = F.to_image_tensor(transform(F.to_image_pil(image))) mae = (actual.float() - expected.float()).abs().mean() assert mae < 1 if interpolation is transforms.InterpolationMode.NEAREST else 6 def _reference_rotate_bounding_boxes(self, bounding_boxes, *, angle, expand, center): # FIXME if expand: raise ValueError("This reference currently does not support expand=True") if center is None: center = [s * 0.5 for s in bounding_boxes.canvas_size[::-1]] a = np.cos(angle * np.pi / 180.0) b = np.sin(angle * np.pi / 180.0) cx = center[0] cy = center[1] affine_matrix = np.array( [ [a, b, cx - cx * a - b * cy], [-b, a, cy + cx * b - a * cy], ], dtype="float64" if bounding_boxes.dtype == torch.float64 else "float32", ) expected_bboxes = reference_affine_bounding_boxes_helper( bounding_boxes, format=bounding_boxes.format, canvas_size=bounding_boxes.canvas_size, affine_matrix=affine_matrix, ) return expected_bboxes @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat)) @pytest.mark.parametrize("angle", _CORRECTNESS_AFFINE_KWARGS["angle"]) # TODO: add support for expand=True in the reference @pytest.mark.parametrize("expand", [False]) @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"]) def test_functional_bounding_boxes_correctness(self, format, angle, expand, center): bounding_boxes = make_bounding_box(format=format) actual = F.rotate(bounding_boxes, angle=angle, expand=expand, center=center) expected = self._reference_rotate_bounding_boxes(bounding_boxes, angle=angle, expand=expand, center=center) torch.testing.assert_close(actual, expected) @pytest.mark.parametrize("format", list(datapoints.BoundingBoxFormat)) # TODO: add support for expand=True in the reference @pytest.mark.parametrize("expand", [False]) @pytest.mark.parametrize("center", _CORRECTNESS_AFFINE_KWARGS["center"]) @pytest.mark.parametrize("seed", list(range(5))) def test_transform_bounding_boxes_correctness(self, format, expand, center, seed): bounding_boxes = make_bounding_box(format=format) transform = transforms.RandomRotation(**self._CORRECTNESS_TRANSFORM_AFFINE_RANGES, expand=expand, center=center) torch.manual_seed(seed) params = transform._get_params([bounding_boxes]) torch.manual_seed(seed) actual = transform(bounding_boxes) expected = self._reference_rotate_bounding_boxes(bounding_boxes, **params, expand=expand, center=center) torch.testing.assert_close(actual, expected) @pytest.mark.parametrize("degrees", _EXHAUSTIVE_TYPE_TRANSFORM_AFFINE_RANGES["degrees"]) @pytest.mark.parametrize("seed", list(range(10))) def test_transform_get_params_bounds(self, degrees, seed): transform = transforms.RandomRotation(degrees=degrees) torch.manual_seed(seed) params = transform._get_params([]) if isinstance(degrees, (int, float)): assert -degrees <= params["angle"] <= degrees else: assert degrees[0] <= params["angle"] <= degrees[1] @pytest.mark.parametrize("param", ["degrees", "center"]) @pytest.mark.parametrize("value", [0, [0], [0, 0, 0]]) def test_transform_sequence_len_errors(self, param, value): if param == "degrees" and not isinstance(value, list): return kwargs = {param: value} if param != "degrees": kwargs["degrees"] = 0 with pytest.raises( ValueError if isinstance(value, list) else TypeError, match=f"{param} should be a sequence of length 2" ): transforms.RandomRotation(**kwargs) def test_transform_negative_degrees_error(self): with pytest.raises(ValueError, match="If degrees is a single number, it must be positive"): transforms.RandomAffine(degrees=-1) def test_transform_unknown_fill_error(self): with pytest.raises(TypeError, match="Got inappropriate fill arg"): transforms.RandomAffine(degrees=0, fill="fill") class TestCompose: class BuiltinTransform(transforms.Transform): def _transform(self, inpt, params): return inpt class PackedInputTransform(nn.Module): def forward(self, sample): assert len(sample) == 2 return sample class UnpackedInputTransform(nn.Module): def forward(self, image, label): return image, label @pytest.mark.parametrize( "transform_clss", [ [BuiltinTransform], [PackedInputTransform], [UnpackedInputTransform], [BuiltinTransform, BuiltinTransform], [PackedInputTransform, PackedInputTransform], [UnpackedInputTransform, UnpackedInputTransform], [BuiltinTransform, PackedInputTransform, BuiltinTransform], [BuiltinTransform, UnpackedInputTransform, BuiltinTransform], [PackedInputTransform, BuiltinTransform, PackedInputTransform], [UnpackedInputTransform, BuiltinTransform, UnpackedInputTransform], ], ) @pytest.mark.parametrize("unpack", [True, False]) def test_packed_unpacked(self, transform_clss, unpack): needs_packed_inputs = any(issubclass(cls, self.PackedInputTransform) for cls in transform_clss) needs_unpacked_inputs = any(issubclass(cls, self.UnpackedInputTransform) for cls in transform_clss) assert not (needs_packed_inputs and needs_unpacked_inputs) transform = transforms.Compose([cls() for cls in transform_clss]) image = make_image() label = 3 packed_input = (image, label) def call_transform(): if unpack: return transform(*packed_input) else: return transform(packed_input) if needs_unpacked_inputs and not unpack: with pytest.raises(TypeError, match="missing 1 required positional argument"): call_transform() elif needs_packed_inputs and unpack: with pytest.raises(TypeError, match="takes 2 positional arguments but 3 were given"): call_transform() else: output = call_transform() assert isinstance(output, tuple) and len(output) == 2 assert output[0] is image assert output[1] is label class TestToDtype: @pytest.mark.parametrize( ("kernel", "make_input"), [ (F.to_dtype_image_tensor, make_image_tensor), (F.to_dtype_image_tensor, make_image), (F.to_dtype_video, make_video), ], ) @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8]) @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8]) @pytest.mark.parametrize("device", cpu_and_cuda()) @pytest.mark.parametrize("scale", (True, False)) def test_kernel(self, kernel, make_input, input_dtype, output_dtype, device, scale): check_kernel( kernel, make_input(dtype=input_dtype, device=device), expect_same_dtype=input_dtype is output_dtype, dtype=output_dtype, scale=scale, ) @pytest.mark.parametrize( ("kernel", "make_input"), [ (F.to_dtype_image_tensor, make_image_tensor), (F.to_dtype_image_tensor, make_image), (F.to_dtype_video, make_video), ], ) @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8]) @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8]) @pytest.mark.parametrize("device", cpu_and_cuda()) @pytest.mark.parametrize("scale", (True, False)) def test_dispatcher(self, kernel, make_input, input_dtype, output_dtype, device, scale): check_dispatcher( F.to_dtype, kernel, make_input(dtype=input_dtype, device=device), # TODO: we could leave check_dispatch to True but it currently fails # in _check_dispatcher_dispatch because there is no to_dtype() method on the datapoints. # We should be able to put this back if we change the dispatch # mechanism e.g. via https://github.com/pytorch/vision/pull/7733 check_dispatch=False, dtype=output_dtype, scale=scale, ) @pytest.mark.parametrize( "make_input", [make_image_tensor, make_image, make_bounding_box, make_segmentation_mask, make_video], ) @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8]) @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8]) @pytest.mark.parametrize("device", cpu_and_cuda()) @pytest.mark.parametrize("scale", (True, False)) @pytest.mark.parametrize("as_dict", (True, False)) def test_transform(self, make_input, input_dtype, output_dtype, device, scale, as_dict): input = make_input(dtype=input_dtype, device=device) if as_dict: output_dtype = {type(input): output_dtype} check_transform(transforms.ToDtype, input, dtype=output_dtype, scale=scale) def reference_convert_dtype_image_tensor(self, image, dtype=torch.float, scale=False): input_dtype = image.dtype output_dtype = dtype if not scale: return image.to(dtype) if output_dtype == input_dtype: return image def fn(value): if input_dtype.is_floating_point: if output_dtype.is_floating_point: return value else: return round(decimal.Decimal(value) * torch.iinfo(output_dtype).max) else: input_max_value = torch.iinfo(input_dtype).max if output_dtype.is_floating_point: return float(decimal.Decimal(value) / input_max_value) else: output_max_value = torch.iinfo(output_dtype).max if input_max_value > output_max_value: factor = (input_max_value + 1) // (output_max_value + 1) return value / factor else: factor = (output_max_value + 1) // (input_max_value + 1) return value * factor return torch.tensor(tree_map(fn, image.tolist()), dtype=dtype, device=image.device) @pytest.mark.parametrize("input_dtype", [torch.float32, torch.float64, torch.uint8]) @pytest.mark.parametrize("output_dtype", [torch.float32, torch.float64, torch.uint8]) @pytest.mark.parametrize("device", cpu_and_cuda()) @pytest.mark.parametrize("scale", (True, False)) def test_image_correctness(self, input_dtype, output_dtype, device, scale): if input_dtype.is_floating_point and output_dtype == torch.int64: pytest.xfail("float to int64 conversion is not supported") input = make_image(dtype=input_dtype, device=device) out = F.to_dtype(input, dtype=output_dtype, scale=scale) expected = self.reference_convert_dtype_image_tensor(input, dtype=output_dtype, scale=scale) if input_dtype.is_floating_point and not output_dtype.is_floating_point and scale: torch.testing.assert_close(out, expected, atol=1, rtol=0) else: torch.testing.assert_close(out, expected) def was_scaled(self, inpt): # this assumes the target dtype is float return inpt.max() <= 1 def make_inpt_with_bbox_and_mask(self, make_input): H, W = 10, 10 inpt_dtype = torch.uint8 bbox_dtype = torch.float32 mask_dtype = torch.bool sample = { "inpt": make_input(size=(H, W), dtype=inpt_dtype), "bbox": make_bounding_box(canvas_size=(H, W), dtype=bbox_dtype), "mask": make_detection_mask(size=(H, W), dtype=mask_dtype), } return sample, inpt_dtype, bbox_dtype, mask_dtype @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video)) @pytest.mark.parametrize("scale", (True, False)) def test_dtype_not_a_dict(self, make_input, scale): # assert only inpt gets transformed when dtype isn't a dict sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input) out = transforms.ToDtype(dtype=torch.float32, scale=scale)(sample) assert out["inpt"].dtype != inpt_dtype assert out["inpt"].dtype == torch.float32 if scale: assert self.was_scaled(out["inpt"]) else: assert not self.was_scaled(out["inpt"]) assert out["bbox"].dtype == bbox_dtype assert out["mask"].dtype == mask_dtype @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video)) def test_others_catch_all_and_none(self, make_input): # make sure "others" works as a catch-all and that None means no conversion sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input) out = transforms.ToDtype(dtype={datapoints.Mask: torch.int64, "others": None})(sample) assert out["inpt"].dtype == inpt_dtype assert out["bbox"].dtype == bbox_dtype assert out["mask"].dtype != mask_dtype assert out["mask"].dtype == torch.int64 @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video)) def test_typical_use_case(self, make_input): # Typical use-case: want to convert dtype and scale for inpt and just dtype for masks. # This just makes sure we now have a decent API for this sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input) out = transforms.ToDtype( dtype={type(sample["inpt"]): torch.float32, datapoints.Mask: torch.int64, "others": None}, scale=True )(sample) assert out["inpt"].dtype != inpt_dtype assert out["inpt"].dtype == torch.float32 assert self.was_scaled(out["inpt"]) assert out["bbox"].dtype == bbox_dtype assert out["mask"].dtype != mask_dtype assert out["mask"].dtype == torch.int64 @pytest.mark.parametrize("make_input", (make_image_tensor, make_image, make_video)) def test_errors_warnings(self, make_input): sample, inpt_dtype, bbox_dtype, mask_dtype = self.make_inpt_with_bbox_and_mask(make_input) with pytest.raises(ValueError, match="No dtype was specified for"): out = transforms.ToDtype(dtype={datapoints.Mask: torch.float32})(sample) with pytest.warns(UserWarning, match=re.escape("plain `torch.Tensor` will *not* be transformed")): transforms.ToDtype(dtype={torch.Tensor: torch.float32, datapoints.Image: torch.float32}) with pytest.warns(UserWarning, match="no scaling will be done"): out = transforms.ToDtype(dtype={"others": None}, scale=True)(sample) assert out["inpt"].dtype == inpt_dtype assert out["bbox"].dtype == bbox_dtype assert out["mask"].dtype == mask_dtype class TestCutMixMixUp: class DummyDataset: def __init__(self, size, num_classes): self.size = size self.num_classes = num_classes assert size < num_classes def __getitem__(self, idx): img = torch.rand(3, 100, 100) label = idx # This ensures all labels in a batch are unique and makes testing easier return img, label def __len__(self): return self.size @pytest.mark.parametrize("T", [transforms.CutMix, transforms.MixUp]) def test_supported_input_structure(self, T): batch_size = 32 num_classes = 100 dataset = self.DummyDataset(size=batch_size, num_classes=num_classes) cutmix_mixup = T(num_classes=num_classes) dl = DataLoader(dataset, batch_size=batch_size) # Input sanity checks img, target = next(iter(dl)) input_img_size = img.shape[-3:] assert isinstance(img, torch.Tensor) and isinstance(target, torch.Tensor) assert target.shape == (batch_size,) def check_output(img, target): assert img.shape == (batch_size, *input_img_size) assert target.shape == (batch_size, num_classes) torch.testing.assert_close(target.sum(axis=-1), torch.ones(batch_size)) num_non_zero_labels = (target != 0).sum(axis=-1) assert (num_non_zero_labels == 2).all() # After Dataloader, as unpacked input img, target = next(iter(dl)) assert target.shape == (batch_size,) img, target = cutmix_mixup(img, target) check_output(img, target) # After Dataloader, as packed input packed_from_dl = next(iter(dl)) assert isinstance(packed_from_dl, list) img, target = cutmix_mixup(packed_from_dl) check_output(img, target) # As collation function. We expect default_collate to be used by users. def collate_fn_1(batch): return cutmix_mixup(default_collate(batch)) def collate_fn_2(batch): return cutmix_mixup(*default_collate(batch)) for collate_fn in (collate_fn_1, collate_fn_2): dl = DataLoader(dataset, batch_size=batch_size, collate_fn=collate_fn) img, target = next(iter(dl)) check_output(img, target) @needs_cuda @pytest.mark.parametrize("T", [transforms.CutMix, transforms.MixUp]) def test_cpu_vs_gpu(self, T): num_classes = 10 batch_size = 3 H, W = 12, 12 imgs = torch.rand(batch_size, 3, H, W) labels = torch.randint(0, num_classes, (batch_size,)) cutmix_mixup = T(alpha=0.5, num_classes=num_classes) _check_kernel_cuda_vs_cpu(cutmix_mixup, imgs, labels, rtol=None, atol=None) @pytest.mark.parametrize("T", [transforms.CutMix, transforms.MixUp]) def test_error(self, T): num_classes = 10 batch_size = 9 imgs = torch.rand(batch_size, 3, 12, 12) cutmix_mixup = T(alpha=0.5, num_classes=num_classes) for input_with_bad_type in ( F.to_pil_image(imgs[0]), datapoints.Mask(torch.rand(12, 12)), datapoints.BoundingBoxes(torch.rand(2, 4), format="XYXY", canvas_size=12), ): with pytest.raises(ValueError, match="does not support PIL images, "): cutmix_mixup(input_with_bad_type) with pytest.raises(ValueError, match="Could not infer where the labels are"): cutmix_mixup({"img": imgs, "Nothing_else": 3}) with pytest.raises(ValueError, match="labels tensor should be of shape"): # Note: the error message isn't ideal, but that's because the label heuristic found the img as the label # It's OK, it's an edge-case. The important thing is that this fails loudly instead of passing silently cutmix_mixup(imgs) with pytest.raises(ValueError, match="When using the default labels_getter"): cutmix_mixup(imgs, "not_a_tensor") with pytest.raises(ValueError, match="labels tensor should be of shape"): cutmix_mixup(imgs, torch.randint(0, 2, size=(2, 3))) with pytest.raises(ValueError, match="Expected a batched input with 4 dims"): cutmix_mixup(imgs[None, None], torch.randint(0, num_classes, size=(batch_size,))) with pytest.raises(ValueError, match="does not match the batch size of the labels"): cutmix_mixup(imgs, torch.randint(0, num_classes, size=(batch_size + 1,))) with pytest.raises(ValueError, match="labels tensor should be of shape"): # The purpose of this check is more about documenting the current # behaviour of what happens on a Compose(), rather than actually # asserting the expected behaviour. We may support Compose() in the # future, e.g. for 2 consecutive CutMix? labels = torch.randint(0, num_classes, size=(batch_size,)) transforms.Compose([cutmix_mixup, cutmix_mixup])(imgs, labels) @pytest.mark.parametrize("key", ("labels", "LABELS", "LaBeL", "SOME_WEIRD_KEY_THAT_HAS_LABeL_IN_IT")) @pytest.mark.parametrize("sample_type", (tuple, list, dict)) def test_labels_getter_default_heuristic(key, sample_type): labels = torch.arange(10) sample = {key: labels, "another_key": "whatever"} if sample_type is not dict: sample = sample_type((None, sample, "whatever_again")) assert transforms._utils._find_labels_default_heuristic(sample) is labels if key.lower() != "labels": # If "labels" is in the dict (case-insensitive), # it takes precedence over other keys which would otherwise be a match d = {key: "something_else", "labels": labels} assert transforms._utils._find_labels_default_heuristic(d) is labels