from functools import partial from typing import Any, Optional, Union from torch import Tensor from torch import nn from torch.ao.quantization import QuantStub, DeQuantStub from torchvision.models.mobilenetv2 import InvertedResidual, MobileNetV2, MobileNet_V2_Weights from ...ops.misc import Conv2dNormActivation from ...transforms._presets import ImageClassification from .._api import WeightsEnum, Weights from .._meta import _IMAGENET_CATEGORIES from .._utils import handle_legacy_interface, _ovewrite_named_param from .utils import _fuse_modules, _replace_relu, quantize_model __all__ = [ "QuantizableMobileNetV2", "MobileNet_V2_QuantizedWeights", "mobilenet_v2", ] class QuantizableInvertedResidual(InvertedResidual): def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) self.skip_add = nn.quantized.FloatFunctional() def forward(self, x: Tensor) -> Tensor: if self.use_res_connect: return self.skip_add.add(x, self.conv(x)) else: return self.conv(x) def fuse_model(self, is_qat: Optional[bool] = None) -> None: for idx in range(len(self.conv)): if type(self.conv[idx]) is nn.Conv2d: _fuse_modules(self.conv, [str(idx), str(idx + 1)], is_qat, inplace=True) class QuantizableMobileNetV2(MobileNetV2): def __init__(self, *args: Any, **kwargs: Any) -> None: """ MobileNet V2 main class Args: Inherits args from floating point MobileNetV2 """ super().__init__(*args, **kwargs) self.quant = QuantStub() self.dequant = DeQuantStub() def forward(self, x: Tensor) -> Tensor: x = self.quant(x) x = self._forward_impl(x) x = self.dequant(x) return x def fuse_model(self, is_qat: Optional[bool] = None) -> None: for m in self.modules(): if type(m) is Conv2dNormActivation: _fuse_modules(m, ["0", "1", "2"], is_qat, inplace=True) if type(m) is QuantizableInvertedResidual: m.fuse_model(is_qat) class MobileNet_V2_QuantizedWeights(WeightsEnum): IMAGENET1K_QNNPACK_V1 = Weights( url="https://download.pytorch.org/models/quantized/mobilenet_v2_qnnpack_37f702c5.pth", transforms=partial(ImageClassification, crop_size=224), meta={ "task": "image_classification", "architecture": "MobileNetV2", "num_params": 3504872, "size": (224, 224), "min_size": (1, 1), "categories": _IMAGENET_CATEGORIES, "backend": "qnnpack", "quantization": "Quantization Aware Training", "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#qat-mobilenetv2", "unquantized": MobileNet_V2_Weights.IMAGENET1K_V1, "acc@1": 71.658, "acc@5": 90.150, }, ) DEFAULT = IMAGENET1K_QNNPACK_V1 @handle_legacy_interface( weights=( "pretrained", lambda kwargs: MobileNet_V2_QuantizedWeights.IMAGENET1K_QNNPACK_V1 if kwargs.get("quantize", False) else MobileNet_V2_Weights.IMAGENET1K_V1, ) ) def mobilenet_v2( *, weights: Optional[Union[MobileNet_V2_QuantizedWeights, MobileNet_V2_Weights]] = None, progress: bool = True, quantize: bool = False, **kwargs: Any, ) -> QuantizableMobileNetV2: """ Constructs a MobileNetV2 architecture from `"MobileNetV2: Inverted Residuals and Linear Bottlenecks" `_. Note that quantize = True returns a quantized model with 8 bit weights. Quantized models only support inference and run on CPUs. GPU inference is not yet supported Args: weights (GoogLeNet_QuantizedWeights or GoogLeNet_Weights, optional): The pretrained weights for the model progress (bool): If True, displays a progress bar of the download to stderr quantize(bool): If True, returns a quantized model, else returns a float model """ weights = (MobileNet_V2_QuantizedWeights if quantize else MobileNet_V2_Weights).verify(weights) if weights is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) if "backend" in weights.meta: _ovewrite_named_param(kwargs, "backend", weights.meta["backend"]) backend = kwargs.pop("backend", "qnnpack") model = QuantizableMobileNetV2(block=QuantizableInvertedResidual, **kwargs) _replace_relu(model) if quantize: quantize_model(model, backend) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress)) return model