from functools import partial from typing import Any, Optional import torch import torch.nn as nn from ..transforms._presets import ImageClassification from ..utils import _log_api_usage_once from ._api import WeightsEnum, Weights from ._meta import _IMAGENET_CATEGORIES from ._utils import handle_legacy_interface, _ovewrite_named_param __all__ = ["AlexNet", "AlexNet_Weights", "alexnet"] class AlexNet(nn.Module): def __init__(self, num_classes: int = 1000, dropout: float = 0.5) -> None: super().__init__() _log_api_usage_once(self) self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(64, 192, kernel_size=5, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(192, 384, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), ) self.avgpool = nn.AdaptiveAvgPool2d((6, 6)) self.classifier = nn.Sequential( nn.Dropout(p=dropout), nn.Linear(256 * 6 * 6, 4096), nn.ReLU(inplace=True), nn.Dropout(p=dropout), nn.Linear(4096, 4096), nn.ReLU(inplace=True), nn.Linear(4096, num_classes), ) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.features(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.classifier(x) return x class AlexNet_Weights(WeightsEnum): IMAGENET1K_V1 = Weights( url="https://download.pytorch.org/models/alexnet-owt-7be5be79.pth", transforms=partial(ImageClassification, crop_size=224), meta={ "task": "image_classification", "architecture": "AlexNet", "num_params": 61100840, "size": (224, 224), "min_size": (63, 63), "categories": _IMAGENET_CATEGORIES, "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#alexnet-and-vgg", "acc@1": 56.522, "acc@5": 79.066, }, ) DEFAULT = IMAGENET1K_V1 @handle_legacy_interface(weights=("pretrained", AlexNet_Weights.IMAGENET1K_V1)) def alexnet(*, weights: Optional[AlexNet_Weights] = None, progress: bool = True, **kwargs: Any) -> AlexNet: r"""AlexNet model architecture from the `"One weird trick..." `_ paper. The required minimum input size of the model is 63x63. Args: weights (AlexNet_Weights, optional): The pretrained weights for the model progress (bool): If True, displays a progress bar of the download to stderr """ weights = AlexNet_Weights.verify(weights) if weights is not None: _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) model = AlexNet(**kwargs) if weights is not None: model.load_state_dict(weights.get_state_dict(progress=progress)) return model