from torchvision.transforms import autoaugment, transforms from torchvision.transforms.functional import InterpolationMode class ClassificationPresetTrain: def __init__(self, crop_size, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), hflip_prob=0.5, auto_augment_policy=None, random_erase_prob=0.0): trans = [transforms.RandomResizedCrop(crop_size)] if hflip_prob > 0: trans.append(transforms.RandomHorizontalFlip(hflip_prob)) if auto_augment_policy is not None: aa_policy = autoaugment.AutoAugmentPolicy(auto_augment_policy) trans.append(autoaugment.AutoAugment(policy=aa_policy)) trans.extend([ transforms.ToTensor(), transforms.Normalize(mean=mean, std=std), ]) if random_erase_prob > 0: trans.append(transforms.RandomErasing(p=random_erase_prob)) self.transforms = transforms.Compose(trans) def __call__(self, img): return self.transforms(img) class ClassificationPresetEval: def __init__(self, crop_size, resize_size=256, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), interpolation=InterpolationMode.BILINEAR): self.transforms = transforms.Compose([ transforms.Resize(resize_size, interpolation=interpolation), transforms.CenterCrop(crop_size), transforms.ToTensor(), transforms.Normalize(mean=mean, std=std), ]) def __call__(self, img): return self.transforms(img)