import torch import torch.nn.functional as F import warnings from collections import OrderedDict from torch import nn, Tensor from typing import Any, Dict, List, Optional, Tuple from . import _utils as det_utils from .anchor_utils import DefaultBoxGenerator from .backbone_utils import _validate_trainable_layers from .transform import GeneralizedRCNNTransform from .. import vgg from ..utils import load_state_dict_from_url from ...ops import boxes as box_ops __all__ = ['SSD', 'ssd300_vgg16'] model_urls = { 'ssd300_vgg16_coco': 'https://download.pytorch.org/models/ssd300_vgg16_coco-b556d3b4.pth', } backbone_urls = { # We port the features of a VGG16 backbone trained by amdegroot because unlike the one on TorchVision, it uses the # same input standardization method as the paper. Ref: https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth 'vgg16_features': 'https://download.pytorch.org/models/vgg16_features-amdegroot.pth' } def _xavier_init(conv: nn.Module): for layer in conv.modules(): if isinstance(layer, nn.Conv2d): torch.nn.init.xavier_uniform_(layer.weight) if layer.bias is not None: torch.nn.init.constant_(layer.bias, 0.0) class SSDHead(nn.Module): def __init__(self, in_channels: List[int], num_anchors: List[int], num_classes: int): super().__init__() self.classification_head = SSDClassificationHead(in_channels, num_anchors, num_classes) self.regression_head = SSDRegressionHead(in_channels, num_anchors) def forward(self, x: List[Tensor]) -> Dict[str, Tensor]: return { 'bbox_regression': self.regression_head(x), 'cls_logits': self.classification_head(x), } class SSDScoringHead(nn.Module): def __init__(self, module_list: nn.ModuleList, num_columns: int): super().__init__() self.module_list = module_list self.num_columns = num_columns def _get_result_from_module_list(self, x: Tensor, idx: int) -> Tensor: """ This is equivalent to self.module_list[idx](x), but torchscript doesn't support this yet """ num_blocks = len(self.module_list) if idx < 0: idx += num_blocks i = 0 out = x for module in self.module_list: if i == idx: out = module(x) i += 1 return out def forward(self, x: List[Tensor]) -> Tensor: all_results = [] for i, features in enumerate(x): results = self._get_result_from_module_list(features, i) # Permute output from (N, A * K, H, W) to (N, HWA, K). N, _, H, W = results.shape results = results.view(N, -1, self.num_columns, H, W) results = results.permute(0, 3, 4, 1, 2) results = results.reshape(N, -1, self.num_columns) # Size=(N, HWA, K) all_results.append(results) return torch.cat(all_results, dim=1) class SSDClassificationHead(SSDScoringHead): def __init__(self, in_channels: List[int], num_anchors: List[int], num_classes: int): cls_logits = nn.ModuleList() for channels, anchors in zip(in_channels, num_anchors): cls_logits.append(nn.Conv2d(channels, num_classes * anchors, kernel_size=3, padding=1)) _xavier_init(cls_logits) super().__init__(cls_logits, num_classes) class SSDRegressionHead(SSDScoringHead): def __init__(self, in_channels: List[int], num_anchors: List[int]): bbox_reg = nn.ModuleList() for channels, anchors in zip(in_channels, num_anchors): bbox_reg.append(nn.Conv2d(channels, 4 * anchors, kernel_size=3, padding=1)) _xavier_init(bbox_reg) super().__init__(bbox_reg, 4) class SSD(nn.Module): """ Implements SSD architecture from `"SSD: Single Shot MultiBox Detector" `_. The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each image, and should be in 0-1 range. Different images can have different sizes but they will be resized to a fixed size before passing it to the backbone. The behavior of the model changes depending if it is in training or evaluation mode. During training, the model expects both the input tensors, as well as a targets (list of dictionary), containing: - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (Int64Tensor[N]): the class label for each ground-truth box The model returns a Dict[Tensor] during training, containing the classification and regression losses. During inference, the model requires only the input tensors, and returns the post-processed predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as follows, where ``N`` is the number of detections: - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (Int64Tensor[N]): the predicted labels for each detection - scores (Tensor[N]): the scores for each detection Args: backbone (nn.Module): the network used to compute the features for the model. It should contain an out_channels attribute with the list of the output channels of each feature map. The backbone should return a single Tensor or an OrderedDict[Tensor]. anchor_generator (DefaultBoxGenerator): module that generates the default boxes for a set of feature maps. size (Tuple[int, int]): the width and height to which images will be rescaled before feeding them to the backbone. num_classes (int): number of output classes of the model (excluding the background). image_mean (Tuple[float, float, float]): mean values used for input normalization. They are generally the mean values of the dataset on which the backbone has been trained on image_std (Tuple[float, float, float]): std values used for input normalization. They are generally the std values of the dataset on which the backbone has been trained on head (nn.Module, optional): Module run on top of the backbone features. Defaults to a module containing a classification and regression module. score_thresh (float): Score threshold used for postprocessing the detections. nms_thresh (float): NMS threshold used for postprocessing the detections. detections_per_img (int): Number of best detections to keep after NMS. iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be considered as positive during training. topk_candidates (int): Number of best detections to keep before NMS. positive_fraction (float): a number between 0 and 1 which indicates the proportion of positive proposals used during the training of the classification head. It is used to estimate the negative to positive ratio. """ __annotations__ = { 'box_coder': det_utils.BoxCoder, 'proposal_matcher': det_utils.Matcher, } def __init__(self, backbone: nn.Module, anchor_generator: DefaultBoxGenerator, size: Tuple[int, int], num_classes: int, image_mean: Optional[List[float]] = None, image_std: Optional[List[float]] = None, head: Optional[nn.Module] = None, score_thresh: float = 0.01, nms_thresh: float = 0.45, detections_per_img: int = 200, iou_thresh: float = 0.5, topk_candidates: int = 400, positive_fraction: float = 0.25): super().__init__() self.backbone = backbone self.anchor_generator = anchor_generator self.box_coder = det_utils.BoxCoder(weights=(10., 10., 5., 5.)) if head is None: if hasattr(backbone, 'out_channels'): out_channels = backbone.out_channels else: out_channels = det_utils.retrieve_out_channels(backbone, size) assert len(out_channels) == len(anchor_generator.aspect_ratios) num_anchors = self.anchor_generator.num_anchors_per_location() head = SSDHead(out_channels, num_anchors, num_classes) self.head = head self.proposal_matcher = det_utils.SSDMatcher(iou_thresh) if image_mean is None: image_mean = [0.485, 0.456, 0.406] if image_std is None: image_std = [0.229, 0.224, 0.225] self.transform = GeneralizedRCNNTransform(min(size), max(size), image_mean, image_std, size_divisible=1, fixed_size=size) self.score_thresh = score_thresh self.nms_thresh = nms_thresh self.detections_per_img = detections_per_img self.topk_candidates = topk_candidates self.neg_to_pos_ratio = (1.0 - positive_fraction) / positive_fraction # used only on torchscript mode self._has_warned = False @torch.jit.unused def eager_outputs(self, losses: Dict[str, Tensor], detections: List[Dict[str, Tensor]]) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]: if self.training: return losses return detections def compute_loss(self, targets: List[Dict[str, Tensor]], head_outputs: Dict[str, Tensor], anchors: List[Tensor], matched_idxs: List[Tensor]) -> Dict[str, Tensor]: bbox_regression = head_outputs['bbox_regression'] cls_logits = head_outputs['cls_logits'] # Match original targets with default boxes num_foreground = 0 bbox_loss = [] cls_targets = [] for (targets_per_image, bbox_regression_per_image, cls_logits_per_image, anchors_per_image, matched_idxs_per_image) in zip(targets, bbox_regression, cls_logits, anchors, matched_idxs): # produce the matching between boxes and targets foreground_idxs_per_image = torch.where(matched_idxs_per_image >= 0)[0] foreground_matched_idxs_per_image = matched_idxs_per_image[foreground_idxs_per_image] num_foreground += foreground_matched_idxs_per_image.numel() # Calculate regression loss matched_gt_boxes_per_image = targets_per_image['boxes'][foreground_matched_idxs_per_image] bbox_regression_per_image = bbox_regression_per_image[foreground_idxs_per_image, :] anchors_per_image = anchors_per_image[foreground_idxs_per_image, :] target_regression = self.box_coder.encode_single(matched_gt_boxes_per_image, anchors_per_image) bbox_loss.append(torch.nn.functional.smooth_l1_loss( bbox_regression_per_image, target_regression, reduction='sum' )) # Estimate ground truth for class targets gt_classes_target = torch.zeros((cls_logits_per_image.size(0), ), dtype=targets_per_image['labels'].dtype, device=targets_per_image['labels'].device) gt_classes_target[foreground_idxs_per_image] = \ targets_per_image['labels'][foreground_matched_idxs_per_image] cls_targets.append(gt_classes_target) bbox_loss = torch.stack(bbox_loss) cls_targets = torch.stack(cls_targets) # Calculate classification loss num_classes = cls_logits.size(-1) cls_loss = F.cross_entropy( cls_logits.view(-1, num_classes), cls_targets.view(-1), reduction='none' ).view(cls_targets.size()) # Hard Negative Sampling foreground_idxs = cls_targets > 0 num_negative = self.neg_to_pos_ratio * foreground_idxs.sum(1, keepdim=True) # num_negative[num_negative < self.neg_to_pos_ratio] = self.neg_to_pos_ratio negative_loss = cls_loss.clone() negative_loss[foreground_idxs] = -float('inf') # use -inf to detect positive values that creeped in the sample values, idx = negative_loss.sort(1, descending=True) # background_idxs = torch.logical_and(idx.sort(1)[1] < num_negative, torch.isfinite(values)) background_idxs = idx.sort(1)[1] < num_negative N = max(1, num_foreground) return { 'bbox_regression': bbox_loss.sum() / N, 'classification': (cls_loss[foreground_idxs].sum() + cls_loss[background_idxs].sum()) / N, } def forward(self, images: List[Tensor], targets: Optional[List[Dict[str, Tensor]]] = None) -> Tuple[Dict[str, Tensor], List[Dict[str, Tensor]]]: if self.training and targets is None: raise ValueError("In training mode, targets should be passed") if self.training: assert targets is not None for target in targets: boxes = target["boxes"] if isinstance(boxes, torch.Tensor): if len(boxes.shape) != 2 or boxes.shape[-1] != 4: raise ValueError("Expected target boxes to be a tensor" "of shape [N, 4], got {:}.".format( boxes.shape)) else: raise ValueError("Expected target boxes to be of type " "Tensor, got {:}.".format(type(boxes))) # get the original image sizes original_image_sizes: List[Tuple[int, int]] = [] for img in images: val = img.shape[-2:] assert len(val) == 2 original_image_sizes.append((val[0], val[1])) # transform the input images, targets = self.transform(images, targets) # Check for degenerate boxes if targets is not None: for target_idx, target in enumerate(targets): boxes = target["boxes"] degenerate_boxes = boxes[:, 2:] <= boxes[:, :2] if degenerate_boxes.any(): bb_idx = torch.where(degenerate_boxes.any(dim=1))[0][0] degen_bb: List[float] = boxes[bb_idx].tolist() raise ValueError("All bounding boxes should have positive height and width." " Found invalid box {} for target at index {}." .format(degen_bb, target_idx)) # get the features from the backbone features = self.backbone(images.tensors) if isinstance(features, torch.Tensor): features = OrderedDict([('0', features)]) features = list(features.values()) # compute the ssd heads outputs using the features head_outputs = self.head(features) # create the set of anchors anchors = self.anchor_generator(images, features) losses = {} detections: List[Dict[str, Tensor]] = [] if self.training: assert targets is not None matched_idxs = [] for anchors_per_image, targets_per_image in zip(anchors, targets): if targets_per_image['boxes'].numel() == 0: matched_idxs.append(torch.full((anchors_per_image.size(0),), -1, dtype=torch.int64, device=anchors_per_image.device)) continue match_quality_matrix = box_ops.box_iou(targets_per_image['boxes'], anchors_per_image) matched_idxs.append(self.proposal_matcher(match_quality_matrix)) losses = self.compute_loss(targets, head_outputs, anchors, matched_idxs) else: detections = self.postprocess_detections(head_outputs, anchors, images.image_sizes) detections = self.transform.postprocess(detections, images.image_sizes, original_image_sizes) if torch.jit.is_scripting(): if not self._has_warned: warnings.warn("SSD always returns a (Losses, Detections) tuple in scripting") self._has_warned = True return losses, detections return self.eager_outputs(losses, detections) def postprocess_detections(self, head_outputs: Dict[str, Tensor], image_anchors: List[Tensor], image_shapes: List[Tuple[int, int]]) -> List[Dict[str, Tensor]]: bbox_regression = head_outputs['bbox_regression'] pred_scores = F.softmax(head_outputs['cls_logits'], dim=-1) num_classes = pred_scores.size(-1) device = pred_scores.device detections: List[Dict[str, Tensor]] = [] for boxes, scores, anchors, image_shape in zip(bbox_regression, pred_scores, image_anchors, image_shapes): boxes = self.box_coder.decode_single(boxes, anchors) boxes = box_ops.clip_boxes_to_image(boxes, image_shape) image_boxes = [] image_scores = [] image_labels = [] for label in range(1, num_classes): score = scores[:, label] keep_idxs = score > self.score_thresh score = score[keep_idxs] box = boxes[keep_idxs] # keep only topk scoring predictions num_topk = min(self.topk_candidates, score.size(0)) score, idxs = score.topk(num_topk) box = box[idxs] image_boxes.append(box) image_scores.append(score) image_labels.append(torch.full_like(score, fill_value=label, dtype=torch.int64, device=device)) image_boxes = torch.cat(image_boxes, dim=0) image_scores = torch.cat(image_scores, dim=0) image_labels = torch.cat(image_labels, dim=0) # non-maximum suppression keep = box_ops.batched_nms(image_boxes, image_scores, image_labels, self.nms_thresh) keep = keep[:self.detections_per_img] detections.append({ 'boxes': image_boxes[keep], 'scores': image_scores[keep], 'labels': image_labels[keep], }) return detections class SSDFeatureExtractorVGG(nn.Module): def __init__(self, backbone: nn.Module, highres: bool): super().__init__() _, _, maxpool3_pos, maxpool4_pos, _ = (i for i, layer in enumerate(backbone) if isinstance(layer, nn.MaxPool2d)) # Patch ceil_mode for maxpool3 to get the same WxH output sizes as the paper backbone[maxpool3_pos].ceil_mode = True # parameters used for L2 regularization + rescaling self.scale_weight = nn.Parameter(torch.ones(512) * 20) # Multiple Feature maps - page 4, Fig 2 of SSD paper self.features = nn.Sequential( *backbone[:maxpool4_pos] # until conv4_3 ) # SSD300 case - page 4, Fig 2 of SSD paper extra = nn.ModuleList([ nn.Sequential( nn.Conv2d(1024, 256, kernel_size=1), nn.ReLU(inplace=True), nn.Conv2d(256, 512, kernel_size=3, padding=1, stride=2), # conv8_2 nn.ReLU(inplace=True), ), nn.Sequential( nn.Conv2d(512, 128, kernel_size=1), nn.ReLU(inplace=True), nn.Conv2d(128, 256, kernel_size=3, padding=1, stride=2), # conv9_2 nn.ReLU(inplace=True), ), nn.Sequential( nn.Conv2d(256, 128, kernel_size=1), nn.ReLU(inplace=True), nn.Conv2d(128, 256, kernel_size=3), # conv10_2 nn.ReLU(inplace=True), ), nn.Sequential( nn.Conv2d(256, 128, kernel_size=1), nn.ReLU(inplace=True), nn.Conv2d(128, 256, kernel_size=3), # conv11_2 nn.ReLU(inplace=True), ) ]) if highres: # Additional layers for the SSD512 case. See page 11, footernote 5. extra.append(nn.Sequential( nn.Conv2d(256, 128, kernel_size=1), nn.ReLU(inplace=True), nn.Conv2d(128, 256, kernel_size=4), # conv12_2 nn.ReLU(inplace=True), )) _xavier_init(extra) fc = nn.Sequential( nn.MaxPool2d(kernel_size=3, stride=1, padding=1, ceil_mode=False), # add modified maxpool5 nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=3, padding=6, dilation=6), # FC6 with atrous nn.ReLU(inplace=True), nn.Conv2d(in_channels=1024, out_channels=1024, kernel_size=1), # FC7 nn.ReLU(inplace=True) ) _xavier_init(fc) extra.insert(0, nn.Sequential( *backbone[maxpool4_pos:-1], # until conv5_3, skip maxpool5 fc, )) self.extra = extra def forward(self, x: Tensor) -> Dict[str, Tensor]: # L2 regularization + Rescaling of 1st block's feature map x = self.features(x) rescaled = self.scale_weight.view(1, -1, 1, 1) * F.normalize(x) output = [rescaled] # Calculating Feature maps for the rest blocks for block in self.extra: x = block(x) output.append(x) return OrderedDict([(str(i), v) for i, v in enumerate(output)]) def _vgg_extractor(backbone_name: str, highres: bool, progress: bool, pretrained: bool, trainable_layers: int): if backbone_name in backbone_urls: # Use custom backbones more appropriate for SSD arch = backbone_name.split('_')[0] backbone = vgg.__dict__[arch](pretrained=False, progress=progress).features if pretrained: state_dict = load_state_dict_from_url(backbone_urls[backbone_name], progress=progress) backbone.load_state_dict(state_dict) else: # Use standard backbones from TorchVision backbone = vgg.__dict__[backbone_name](pretrained=pretrained, progress=progress).features # Gather the indices of maxpools. These are the locations of output blocks. stage_indices = [i for i, b in enumerate(backbone) if isinstance(b, nn.MaxPool2d)] num_stages = len(stage_indices) # find the index of the layer from which we wont freeze assert 0 <= trainable_layers <= num_stages freeze_before = num_stages if trainable_layers == 0 else stage_indices[num_stages - trainable_layers] for b in backbone[:freeze_before]: for parameter in b.parameters(): parameter.requires_grad_(False) return SSDFeatureExtractorVGG(backbone, highres) def ssd300_vgg16(pretrained: bool = False, progress: bool = True, num_classes: int = 91, pretrained_backbone: bool = True, trainable_backbone_layers: Optional[int] = None, **kwargs: Any): """Constructs an SSD model with input size 300x300 and a VGG16 backbone. Reference: `"SSD: Single Shot MultiBox Detector" `_. The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each image, and should be in 0-1 range. Different images can have different sizes but they will be resized to a fixed size before passing it to the backbone. The behavior of the model changes depending if it is in training or evaluation mode. During training, the model expects both the input tensors, as well as a targets (list of dictionary), containing: - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (Int64Tensor[N]): the class label for each ground-truth box The model returns a Dict[Tensor] during training, containing the classification and regression losses. During inference, the model requires only the input tensors, and returns the post-processed predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as follows, where ``N`` is the number of detections: - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``. - labels (Int64Tensor[N]): the predicted labels for each detection - scores (Tensor[N]): the scores for each detection Example: >>> model = torchvision.models.detection.ssd300_vgg16(pretrained=True) >>> model.eval() >>> x = [torch.rand(3, 300, 300), torch.rand(3, 500, 400)] >>> predictions = model(x) Args: pretrained (bool): If True, returns a model pre-trained on COCO train2017 progress (bool): If True, displays a progress bar of the download to stderr num_classes (int): number of output classes of the model (including the background) pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. """ if "size" in kwargs: warnings.warn("The size of the model is already fixed; ignoring the argument.") trainable_backbone_layers = _validate_trainable_layers( pretrained or pretrained_backbone, trainable_backbone_layers, 5, 5) if pretrained: # no need to download the backbone if pretrained is set pretrained_backbone = False backbone = _vgg_extractor("vgg16_features", False, progress, pretrained_backbone, trainable_backbone_layers) anchor_generator = DefaultBoxGenerator([[2], [2, 3], [2, 3], [2, 3], [2], [2]], scales=[0.07, 0.15, 0.33, 0.51, 0.69, 0.87, 1.05], steps=[8, 16, 32, 64, 100, 300]) defaults = { # Rescale the input in a way compatible to the backbone "image_mean": [0.48235, 0.45882, 0.40784], "image_std": [1.0 / 255.0, 1.0 / 255.0, 1.0 / 255.0], # undo the 0-1 scaling of toTensor } kwargs = {**defaults, **kwargs} model = SSD(backbone, anchor_generator, (300, 300), num_classes, **kwargs) if pretrained: weights_name = 'ssd300_vgg16_coco' if model_urls.get(weights_name, None) is None: raise ValueError("No checkpoint is available for model {}".format(weights_name)) state_dict = load_state_dict_from_url(model_urls[weights_name], progress=progress) model.load_state_dict(state_dict) return model