""" ================================== Getting started with transforms v2 ================================== Most computer vision tasks are not supported out of the box by ``torchvision.transforms`` v1, since it only supports images. ``torchvision.transforms.v2`` enables jointly transforming images, videos, bounding boxes, and masks. This example showcases the core functionality of the new ``torchvision.transforms.v2`` API. """ import pathlib import torch import torchvision def load_data(): from torchvision.io import read_image from torchvision import datapoints from torchvision.ops import masks_to_boxes assets_directory = pathlib.Path("assets") path = assets_directory / "FudanPed00054.png" image = datapoints.Image(read_image(str(path))) merged_masks = read_image(str(assets_directory / "FudanPed00054_mask.png")) labels = torch.unique(merged_masks)[1:] masks = datapoints.Mask(merged_masks == labels.view(-1, 1, 1)) bounding_boxes = datapoints.BoundingBoxes( masks_to_boxes(masks), format=datapoints.BoundingBoxFormat.XYXY, canvas_size=image.shape[-2:] ) return path, image, bounding_boxes, masks, labels ######################################################################################################################## # The :mod:`torchvision.transforms.v2` API supports images, videos, bounding boxes, and instance and segmentation # masks. Thus, it offers native support for many Computer Vision tasks, like image and video classification, object # detection or instance and semantic segmentation. Still, the interface is the same, making # :mod:`torchvision.transforms.v2` a drop-in replacement for the existing :mod:`torchvision.transforms` API, aka v1. # We are using BETA APIs, so we deactivate the associated warning, thereby acknowledging that # some APIs may slightly change in the future torchvision.disable_beta_transforms_warning() import torchvision.transforms.v2 as transforms transform = transforms.Compose( [ transforms.ColorJitter(contrast=0.5), transforms.RandomRotation(30), transforms.CenterCrop(480), ] ) ######################################################################################################################## # :mod:`torchvision.transforms.v2` natively supports jointly transforming multiple inputs while making sure that # potential random behavior is consistent across all inputs. However, it doesn't enforce a specific input structure or # order. path, image, bounding_boxes, masks, labels = load_data() torch.manual_seed(0) new_image = transform(image) # Image Classification new_image, new_bounding_boxes, new_labels = transform(image, bounding_boxes, labels) # Object Detection new_image, new_bounding_boxes, new_masks, new_labels = transform( image, bounding_boxes, masks, labels ) # Instance Segmentation new_image, new_target = transform((image, {"boxes": bounding_boxes, "labels": labels})) # Arbitrary Structure ######################################################################################################################## # Under the hood, :mod:`torchvision.transforms.v2` relies on :mod:`torchvision.datapoints` for the dispatch to the # appropriate function for the input data: :ref:`sphx_glr_auto_examples_plot_datapoints.py`. Note however, that as # regular user, you likely don't have to touch this yourself. See # :ref:`sphx_glr_auto_examples_plot_transforms_v2_e2e.py`. # # All "foreign" types like :class:`str`'s or :class:`pathlib.Path`'s are passed through, allowing to store extra # information directly with the sample: sample = {"path": path, "image": image} new_sample = transform(sample) assert new_sample["path"] is sample["path"] ######################################################################################################################## # As stated above, :mod:`torchvision.transforms.v2` is a drop-in replacement for :mod:`torchvision.transforms` and thus # also supports transforming plain :class:`torch.Tensor`'s as image or video if applicable. This is achieved with a # simple heuristic: # # * If we find an explicit image or video (:class:`torchvision.datapoints.Image`, :class:`torchvision.datapoints.Video`, # or :class:`PIL.Image.Image`) in the input, all other plain tensors are passed through. # * If there is no explicit image or video, only the first plain :class:`torch.Tensor` will be transformed as image or # video, while all others will be passed through. plain_tensor_image = torch.rand(image.shape) print(image.shape, plain_tensor_image.shape) # passing a plain tensor together with an explicit image, will not transform the former plain_tensor_image, image = transform(plain_tensor_image, image) print(image.shape, plain_tensor_image.shape) # passing a plain tensor without an explicit image, will transform the former plain_tensor_image, _ = transform(plain_tensor_image, bounding_boxes) print(image.shape, plain_tensor_image.shape)