import glob import io import os import unittest import pytest import numpy as np import torch from PIL import Image from common_utils import get_tmp_dir, needs_cuda from _assert_utils import assert_equal from torchvision.io.image import ( decode_png, decode_jpeg, encode_jpeg, write_jpeg, decode_image, read_file, encode_png, write_png, write_file, ImageReadMode) IMAGE_ROOT = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets") FAKEDATA_DIR = os.path.join(IMAGE_ROOT, "fakedata") IMAGE_DIR = os.path.join(FAKEDATA_DIR, "imagefolder") DAMAGED_JPEG = os.path.join(IMAGE_ROOT, 'damaged_jpeg') ENCODE_JPEG = os.path.join(IMAGE_ROOT, "encode_jpeg") def get_images(directory, img_ext): assert os.path.isdir(directory) image_paths = glob.glob(directory + f'/**/*{img_ext}', recursive=True) for path in image_paths: if path.split(os.sep)[-2] not in ['damaged_jpeg', 'jpeg_write']: yield path def pil_read_image(img_path): with Image.open(img_path) as img: return torch.from_numpy(np.array(img)) def normalize_dimensions(img_pil): if len(img_pil.shape) == 3: img_pil = img_pil.permute(2, 0, 1) else: img_pil = img_pil.unsqueeze(0) return img_pil class ImageTester(unittest.TestCase): def test_decode_jpeg(self): conversion = [(None, ImageReadMode.UNCHANGED), ("L", ImageReadMode.GRAY), ("RGB", ImageReadMode.RGB)] for img_path in get_images(IMAGE_ROOT, ".jpg"): for pil_mode, mode in conversion: with Image.open(img_path) as img: is_cmyk = img.mode == "CMYK" if pil_mode is not None: if is_cmyk: # libjpeg does not support the conversion continue img = img.convert(pil_mode) img_pil = torch.from_numpy(np.array(img)) if is_cmyk: # flip the colors to match libjpeg img_pil = 255 - img_pil img_pil = normalize_dimensions(img_pil) data = read_file(img_path) img_ljpeg = decode_image(data, mode=mode) # Permit a small variation on pixel values to account for implementation # differences between Pillow and LibJPEG. abs_mean_diff = (img_ljpeg.type(torch.float32) - img_pil).abs().mean().item() self.assertTrue(abs_mean_diff < 2) with self.assertRaisesRegex(RuntimeError, "Expected a non empty 1-dimensional tensor"): decode_jpeg(torch.empty((100, 1), dtype=torch.uint8)) with self.assertRaisesRegex(RuntimeError, "Expected a torch.uint8 tensor"): decode_jpeg(torch.empty((100,), dtype=torch.float16)) with self.assertRaises(RuntimeError): decode_jpeg(torch.empty((100), dtype=torch.uint8)) def test_damaged_images(self): # Test image with bad Huffman encoding (should not raise) bad_huff = read_file(os.path.join(DAMAGED_JPEG, 'bad_huffman.jpg')) try: _ = decode_jpeg(bad_huff) except RuntimeError: self.assertTrue(False) # Truncated images should raise an exception truncated_images = glob.glob( os.path.join(DAMAGED_JPEG, 'corrupt*.jpg')) for image_path in truncated_images: data = read_file(image_path) with self.assertRaises(RuntimeError): decode_jpeg(data) def test_encode_jpeg(self): for img_path in get_images(ENCODE_JPEG, ".jpg"): dirname = os.path.dirname(img_path) filename, _ = os.path.splitext(os.path.basename(img_path)) write_folder = os.path.join(dirname, 'jpeg_write') expected_file = os.path.join( write_folder, '{0}_pil.jpg'.format(filename)) img = decode_jpeg(read_file(img_path)) with open(expected_file, 'rb') as f: pil_bytes = f.read() pil_bytes = torch.as_tensor(list(pil_bytes), dtype=torch.uint8) for src_img in [img, img.contiguous()]: # PIL sets jpeg quality to 75 by default jpeg_bytes = encode_jpeg(src_img, quality=75) assert_equal(jpeg_bytes, pil_bytes) with self.assertRaisesRegex( RuntimeError, "Input tensor dtype should be uint8"): encode_jpeg(torch.empty((3, 100, 100), dtype=torch.float32)) with self.assertRaisesRegex( ValueError, "Image quality should be a positive number " "between 1 and 100"): encode_jpeg(torch.empty((3, 100, 100), dtype=torch.uint8), quality=-1) with self.assertRaisesRegex( ValueError, "Image quality should be a positive number " "between 1 and 100"): encode_jpeg(torch.empty((3, 100, 100), dtype=torch.uint8), quality=101) with self.assertRaisesRegex( RuntimeError, "The number of channels should be 1 or 3, got: 5"): encode_jpeg(torch.empty((5, 100, 100), dtype=torch.uint8)) with self.assertRaisesRegex( RuntimeError, "Input data should be a 3-dimensional tensor"): encode_jpeg(torch.empty((1, 3, 100, 100), dtype=torch.uint8)) with self.assertRaisesRegex( RuntimeError, "Input data should be a 3-dimensional tensor"): encode_jpeg(torch.empty((100, 100), dtype=torch.uint8)) def test_write_jpeg(self): with get_tmp_dir() as d: for img_path in get_images(ENCODE_JPEG, ".jpg"): data = read_file(img_path) img = decode_jpeg(data) basedir = os.path.dirname(img_path) filename, _ = os.path.splitext(os.path.basename(img_path)) torch_jpeg = os.path.join( d, '{0}_torch.jpg'.format(filename)) pil_jpeg = os.path.join( basedir, 'jpeg_write', '{0}_pil.jpg'.format(filename)) write_jpeg(img, torch_jpeg, quality=75) with open(torch_jpeg, 'rb') as f: torch_bytes = f.read() with open(pil_jpeg, 'rb') as f: pil_bytes = f.read() self.assertEqual(torch_bytes, pil_bytes) def test_decode_png(self): conversion = [(None, ImageReadMode.UNCHANGED), ("L", ImageReadMode.GRAY), ("LA", ImageReadMode.GRAY_ALPHA), ("RGB", ImageReadMode.RGB), ("RGBA", ImageReadMode.RGB_ALPHA)] for img_path in get_images(FAKEDATA_DIR, ".png"): for pil_mode, mode in conversion: with Image.open(img_path) as img: if pil_mode is not None: img = img.convert(pil_mode) img_pil = torch.from_numpy(np.array(img)) img_pil = normalize_dimensions(img_pil) data = read_file(img_path) img_lpng = decode_image(data, mode=mode) tol = 0 if conversion is None else 1 self.assertTrue(img_lpng.allclose(img_pil, atol=tol)) with self.assertRaises(RuntimeError): decode_png(torch.empty((), dtype=torch.uint8)) with self.assertRaises(RuntimeError): decode_png(torch.randint(3, 5, (300,), dtype=torch.uint8)) def test_encode_png(self): for img_path in get_images(IMAGE_DIR, '.png'): pil_image = Image.open(img_path) img_pil = torch.from_numpy(np.array(pil_image)) img_pil = img_pil.permute(2, 0, 1) png_buf = encode_png(img_pil, compression_level=6) rec_img = Image.open(io.BytesIO(bytes(png_buf.tolist()))) rec_img = torch.from_numpy(np.array(rec_img)) rec_img = rec_img.permute(2, 0, 1) assert_equal(img_pil, rec_img) with self.assertRaisesRegex( RuntimeError, "Input tensor dtype should be uint8"): encode_png(torch.empty((3, 100, 100), dtype=torch.float32)) with self.assertRaisesRegex( RuntimeError, "Compression level should be between 0 and 9"): encode_png(torch.empty((3, 100, 100), dtype=torch.uint8), compression_level=-1) with self.assertRaisesRegex( RuntimeError, "Compression level should be between 0 and 9"): encode_png(torch.empty((3, 100, 100), dtype=torch.uint8), compression_level=10) with self.assertRaisesRegex( RuntimeError, "The number of channels should be 1 or 3, got: 5"): encode_png(torch.empty((5, 100, 100), dtype=torch.uint8)) def test_write_png(self): with get_tmp_dir() as d: for img_path in get_images(IMAGE_DIR, '.png'): pil_image = Image.open(img_path) img_pil = torch.from_numpy(np.array(pil_image)) img_pil = img_pil.permute(2, 0, 1) filename, _ = os.path.splitext(os.path.basename(img_path)) torch_png = os.path.join(d, '{0}_torch.png'.format(filename)) write_png(img_pil, torch_png, compression_level=6) saved_image = torch.from_numpy(np.array(Image.open(torch_png))) saved_image = saved_image.permute(2, 0, 1) assert_equal(img_pil, saved_image) def test_read_file(self): with get_tmp_dir() as d: fname, content = 'test1.bin', b'TorchVision\211\n' fpath = os.path.join(d, fname) with open(fpath, 'wb') as f: f.write(content) data = read_file(fpath) expected = torch.tensor(list(content), dtype=torch.uint8) assert_equal(data, expected) os.unlink(fpath) with self.assertRaisesRegex( RuntimeError, "No such file or directory: 'tst'"): read_file('tst') def test_read_file_non_ascii(self): with get_tmp_dir() as d: fname, content = '日本語(Japanese).bin', b'TorchVision\211\n' fpath = os.path.join(d, fname) with open(fpath, 'wb') as f: f.write(content) data = read_file(fpath) expected = torch.tensor(list(content), dtype=torch.uint8) assert_equal(data, expected) os.unlink(fpath) def test_write_file(self): with get_tmp_dir() as d: fname, content = 'test1.bin', b'TorchVision\211\n' fpath = os.path.join(d, fname) content_tensor = torch.tensor(list(content), dtype=torch.uint8) write_file(fpath, content_tensor) with open(fpath, 'rb') as f: saved_content = f.read() self.assertEqual(content, saved_content) os.unlink(fpath) def test_write_file_non_ascii(self): with get_tmp_dir() as d: fname, content = '日本語(Japanese).bin', b'TorchVision\211\n' fpath = os.path.join(d, fname) content_tensor = torch.tensor(list(content), dtype=torch.uint8) write_file(fpath, content_tensor) with open(fpath, 'rb') as f: saved_content = f.read() self.assertEqual(content, saved_content) os.unlink(fpath) @needs_cuda @pytest.mark.parametrize('img_path', [ # We need to change the "id" for that parameter. # If we don't, the test id (i.e. its name) will contain the whole path to the image which is machine-specific, # and this creates issues when the test is running in a different machine than where it was collected # (typically, in fb internal infra) pytest.param(jpeg_path, id=jpeg_path.split('/')[-1]) for jpeg_path in get_images(IMAGE_ROOT, ".jpg") ]) @pytest.mark.parametrize('mode', [ImageReadMode.UNCHANGED, ImageReadMode.GRAY, ImageReadMode.RGB]) @pytest.mark.parametrize('scripted', (False, True)) def test_decode_jpeg_cuda(mode, img_path, scripted): if 'cmyk' in img_path: pytest.xfail("Decoding a CMYK jpeg isn't supported") tester = ImageTester() data = read_file(img_path) img = decode_image(data, mode=mode) f = torch.jit.script(decode_jpeg) if scripted else decode_jpeg img_nvjpeg = f(data, mode=mode, device='cuda') # Some difference expected between jpeg implementations tester.assertTrue((img.float() - img_nvjpeg.cpu().float()).abs().mean() < 2) @needs_cuda @pytest.mark.parametrize('cuda_device', ('cuda', 'cuda:0', torch.device('cuda'))) def test_decode_jpeg_cuda_device_param(cuda_device): """Make sure we can pass a string or a torch.device as device param""" data = read_file(next(get_images(IMAGE_ROOT, ".jpg"))) decode_jpeg(data, device=cuda_device) @needs_cuda def test_decode_jpeg_cuda_errors(): data = read_file(next(get_images(IMAGE_ROOT, ".jpg"))) with pytest.raises(RuntimeError, match="Expected a non empty 1-dimensional tensor"): decode_jpeg(data.reshape(-1, 1), device='cuda') with pytest.raises(RuntimeError, match="input tensor must be on CPU"): decode_jpeg(data.to('cuda'), device='cuda') with pytest.raises(RuntimeError, match="Expected a torch.uint8 tensor"): decode_jpeg(data.to(torch.float), device='cuda') with pytest.raises(RuntimeError, match="Expected a cuda device"): torch.ops.image.decode_jpeg_cuda(data, ImageReadMode.UNCHANGED.value, 'cpu') if __name__ == '__main__': unittest.main()