from __future__ import division import math import unittest import numpy as np import torch from torch import Tensor from torch.autograd import gradcheck from torch.jit.annotations import Tuple from torch.nn.modules.utils import _pair from torchvision import ops class OpTester(object): @classmethod def setUpClass(cls): cls.dtype = torch.float64 def test_forward_cpu_contiguous(self): self._test_forward(device=torch.device('cpu'), contiguous=True) def test_forward_cpu_non_contiguous(self): self._test_forward(device=torch.device('cpu'), contiguous=False) def test_backward_cpu_contiguous(self): self._test_backward(device=torch.device('cpu'), contiguous=True) def test_backward_cpu_non_contiguous(self): self._test_backward(device=torch.device('cpu'), contiguous=False) @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable") def test_forward_cuda_contiguous(self): self._test_forward(device=torch.device('cuda'), contiguous=True) @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable") def test_forward_cuda_non_contiguous(self): self._test_forward(device=torch.device('cuda'), contiguous=False) @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable") def test_backward_cuda_contiguous(self): self._test_backward(device=torch.device('cuda'), contiguous=True) @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable") def test_backward_cuda_non_contiguous(self): self._test_backward(device=torch.device('cuda'), contiguous=False) def _test_forward(self, device, contiguous): pass def _test_backward(self, device, contiguous): pass class RoIOpTester(OpTester): def _test_forward(self, device, contiguous): pool_size = 5 # n_channels % (pool_size ** 2) == 0 required for PS opeartions. n_channels = 2 * (pool_size ** 2) x = torch.rand(2, n_channels, 10, 10, dtype=self.dtype, device=device) if not contiguous: x = x.permute(0, 1, 3, 2) rois = torch.tensor([[0, 0, 0, 9, 9], # format is (xyxy) [0, 0, 5, 4, 9], [0, 5, 5, 9, 9], [1, 0, 0, 9, 9]], dtype=self.dtype, device=device) pool_h, pool_w = pool_size, pool_size y = self.fn(x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1) gt_y = self.expected_fn(x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, device=device, dtype=self.dtype) self.assertTrue(torch.allclose(gt_y, y)) def _test_backward(self, device, contiguous): pool_size = 2 x = torch.rand(1, 2 * (pool_size ** 2), 5, 5, dtype=self.dtype, device=device, requires_grad=True) if not contiguous: x = x.permute(0, 1, 3, 2) rois = torch.tensor([[0, 0, 0, 4, 4], # format is (xyxy) [0, 0, 2, 3, 4], [0, 2, 2, 4, 4]], dtype=self.dtype, device=device) def func(z): return self.fn(z, rois, pool_size, pool_size, spatial_scale=1, sampling_ratio=1) script_func = self.get_script_fn(rois, pool_size) self.assertTrue(gradcheck(func, (x,))) self.assertTrue(gradcheck(script_func, (x,))) def fn(*args, **kwargs): pass def get_script_fn(*args, **kwargs): pass def expected_fn(*args, **kwargs): pass class RoIPoolTester(RoIOpTester, unittest.TestCase): def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs): return ops.RoIPool((pool_h, pool_w), spatial_scale)(x, rois) def get_script_fn(self, rois, pool_size): @torch.jit.script def script_fn(input, rois, pool_size): # type: (Tensor, Tensor, int) -> Tensor return ops.roi_pool(input, rois, pool_size, 1.0)[0] return lambda x: script_fn(x, rois, pool_size) def expected_fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, device=None, dtype=torch.float64): if device is None: device = torch.device("cpu") n_channels = x.size(1) y = torch.zeros(rois.size(0), n_channels, pool_h, pool_w, dtype=dtype, device=device) def get_slice(k, block): return slice(int(np.floor(k * block)), int(np.ceil((k + 1) * block))) for roi_idx, roi in enumerate(rois): batch_idx = int(roi[0]) j_begin, i_begin, j_end, i_end = (int(round(x.item() * spatial_scale)) for x in roi[1:]) roi_x = x[batch_idx, :, i_begin:i_end + 1, j_begin:j_end + 1] roi_h, roi_w = roi_x.shape[-2:] bin_h = roi_h / pool_h bin_w = roi_w / pool_w for i in range(0, pool_h): for j in range(0, pool_w): bin_x = roi_x[:, get_slice(i, bin_h), get_slice(j, bin_w)] if bin_x.numel() > 0: y[roi_idx, :, i, j] = bin_x.reshape(n_channels, -1).max(dim=1)[0] return y class PSRoIPoolTester(RoIOpTester, unittest.TestCase): def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs): return ops.PSRoIPool((pool_h, pool_w), 1)(x, rois) def get_script_fn(self, rois, pool_size): @torch.jit.script def script_fn(input, rois, pool_size): # type: (Tensor, Tensor, int) -> Tensor return ops.ps_roi_pool(input, rois, pool_size, 1.0)[0] return lambda x: script_fn(x, rois, pool_size) def expected_fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, device=None, dtype=torch.float64): if device is None: device = torch.device("cpu") n_input_channels = x.size(1) self.assertEqual(n_input_channels % (pool_h * pool_w), 0, "input channels must be divisible by ph * pw") n_output_channels = int(n_input_channels / (pool_h * pool_w)) y = torch.zeros(rois.size(0), n_output_channels, pool_h, pool_w, dtype=dtype, device=device) def get_slice(k, block): return slice(int(np.floor(k * block)), int(np.ceil((k + 1) * block))) for roi_idx, roi in enumerate(rois): batch_idx = int(roi[0]) j_begin, i_begin, j_end, i_end = (int(round(x.item() * spatial_scale)) for x in roi[1:]) roi_x = x[batch_idx, :, i_begin:i_end + 1, j_begin:j_end + 1] roi_height = max(i_end - i_begin, 1) roi_width = max(j_end - j_begin, 1) bin_h, bin_w = roi_height / float(pool_h), roi_width / float(pool_w) for i in range(0, pool_h): for j in range(0, pool_w): bin_x = roi_x[:, get_slice(i, bin_h), get_slice(j, bin_w)] if bin_x.numel() > 0: area = bin_x.size(-2) * bin_x.size(-1) for c_out in range(0, n_output_channels): c_in = c_out * (pool_h * pool_w) + pool_w * i + j t = torch.sum(bin_x[c_in, :, :]) y[roi_idx, c_out, i, j] = t / area return y def bilinear_interpolate(data, y, x, snap_border=False): height, width = data.shape if snap_border: if -1 < y <= 0: y = 0 elif height - 1 <= y < height: y = height - 1 if -1 < x <= 0: x = 0 elif width - 1 <= x < width: x = width - 1 y_low = int(math.floor(y)) x_low = int(math.floor(x)) y_high = y_low + 1 x_high = x_low + 1 wy_h = y - y_low wx_h = x - x_low wy_l = 1 - wy_h wx_l = 1 - wx_h val = 0 for wx, xp in zip((wx_l, wx_h), (x_low, x_high)): for wy, yp in zip((wy_l, wy_h), (y_low, y_high)): if 0 <= yp < height and 0 <= xp < width: val += wx * wy * data[yp, xp] return val class RoIAlignTester(RoIOpTester, unittest.TestCase): def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs): return ops.RoIAlign((pool_h, pool_w), spatial_scale=spatial_scale, sampling_ratio=sampling_ratio)(x, rois) def get_script_fn(self, rois, pool_size): @torch.jit.script def script_fn(input, rois, pool_size): # type: (Tensor, Tensor, int) -> Tensor return ops.roi_align(input, rois, pool_size, 1.0)[0] return lambda x: script_fn(x, rois, pool_size) def expected_fn(self, in_data, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, device=None, dtype=torch.float64): if device is None: device = torch.device("cpu") n_channels = in_data.size(1) out_data = torch.zeros(rois.size(0), n_channels, pool_h, pool_w, dtype=dtype, device=device) for r, roi in enumerate(rois): batch_idx = int(roi[0]) j_begin, i_begin, j_end, i_end = (x.item() * spatial_scale for x in roi[1:]) roi_h = i_end - i_begin roi_w = j_end - j_begin bin_h = roi_h / pool_h bin_w = roi_w / pool_w for i in range(0, pool_h): start_h = i_begin + i * bin_h grid_h = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_h)) for j in range(0, pool_w): start_w = j_begin + j * bin_w grid_w = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_w)) for channel in range(0, n_channels): val = 0 for iy in range(0, grid_h): y = start_h + (iy + 0.5) * bin_h / grid_h for ix in range(0, grid_w): x = start_w + (ix + 0.5) * bin_w / grid_w val += bilinear_interpolate(in_data[batch_idx, channel, :, :], y, x, snap_border=True) val /= grid_h * grid_w out_data[r, channel, i, j] = val return out_data class PSRoIAlignTester(RoIOpTester, unittest.TestCase): def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs): return ops.PSRoIAlign((pool_h, pool_w), spatial_scale=spatial_scale, sampling_ratio=sampling_ratio)(x, rois) def get_script_fn(self, rois, pool_size): @torch.jit.script def script_fn(input, rois, pool_size): # type: (Tensor, Tensor, int) -> Tensor return ops.ps_roi_align(input, rois, pool_size, 1.0)[0] return lambda x: script_fn(x, rois, pool_size) def expected_fn(self, in_data, rois, pool_h, pool_w, device, spatial_scale=1, sampling_ratio=-1, dtype=torch.float64): if device is None: device = torch.device("cpu") n_input_channels = in_data.size(1) self.assertEqual(n_input_channels % (pool_h * pool_w), 0, "input channels must be divisible by ph * pw") n_output_channels = int(n_input_channels / (pool_h * pool_w)) out_data = torch.zeros(rois.size(0), n_output_channels, pool_h, pool_w, dtype=dtype, device=device) for r, roi in enumerate(rois): batch_idx = int(roi[0]) j_begin, i_begin, j_end, i_end = (x.item() * spatial_scale - 0.5 for x in roi[1:]) roi_h = i_end - i_begin roi_w = j_end - j_begin bin_h = roi_h / pool_h bin_w = roi_w / pool_w for i in range(0, pool_h): start_h = i_begin + i * bin_h grid_h = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_h)) for j in range(0, pool_w): start_w = j_begin + j * bin_w grid_w = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_w)) for c_out in range(0, n_output_channels): c_in = c_out * (pool_h * pool_w) + pool_w * i + j val = 0 for iy in range(0, grid_h): y = start_h + (iy + 0.5) * bin_h / grid_h for ix in range(0, grid_w): x = start_w + (ix + 0.5) * bin_w / grid_w val += bilinear_interpolate(in_data[batch_idx, c_in, :, :], y, x, snap_border=True) val /= grid_h * grid_w out_data[r, c_out, i, j] = val return out_data class NMSTester(unittest.TestCase): def reference_nms(self, boxes, scores, iou_threshold): """ Args: box_scores (N, 5): boxes in corner-form and probabilities. iou_threshold: intersection over union threshold. Returns: picked: a list of indexes of the kept boxes """ picked = [] _, indexes = scores.sort(descending=True) while len(indexes) > 0: current = indexes[0] picked.append(current.item()) if len(indexes) == 1: break current_box = boxes[current, :] indexes = indexes[1:] rest_boxes = boxes[indexes, :] iou = ops.box_iou(rest_boxes, current_box.unsqueeze(0)).squeeze(1) indexes = indexes[iou <= iou_threshold] return torch.as_tensor(picked) def _create_tensors_with_iou(self, N, iou_thresh): # force last box to have a pre-defined iou with the first box # let b0 be [x0, y0, x1, y1], and b1 be [x0, y0, x1 + d, y1], # then, in order to satisfy ops.iou(b0, b1) == iou_thresh, # we need to have d = (x1 - x0) * (1 - iou_thresh) / iou_thresh boxes = torch.rand(N, 4) * 100 boxes[:, 2:] += boxes[:, :2] boxes[-1, :] = boxes[0, :] x0, y0, x1, y1 = boxes[-1].tolist() boxes[-1, 2] += (x1 - x0) * (1 - iou_thresh) / iou_thresh scores = torch.rand(N) return boxes, scores def test_nms(self): err_msg = 'NMS incompatible between CPU and reference implementation for IoU={}' for iou in [0.2, 0.5, 0.8]: boxes, scores = self._create_tensors_with_iou(1000, iou) keep_ref = self.reference_nms(boxes, scores, iou) keep = ops.nms(boxes, scores, iou) self.assertTrue(torch.allclose(keep, keep_ref), err_msg.format(iou)) @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable") def test_nms_cuda(self): err_msg = 'NMS incompatible between CPU and CUDA for IoU={}' for iou in [0.2, 0.5, 0.8]: boxes, scores = self._create_tensors_with_iou(1000, iou) r_cpu = ops.nms(boxes, scores, iou) r_cuda = ops.nms(boxes.cuda(), scores.cuda(), iou) self.assertTrue(torch.allclose(r_cpu, r_cuda.cpu()), err_msg.format(iou)) class NewEmptyTensorTester(unittest.TestCase): def test_new_empty_tensor(self): input = torch.tensor([2., 2.], requires_grad=True) new_shape = [3, 3] out = torch.ops.torchvision._new_empty_tensor_op(input, new_shape) assert out.size() == torch.Size([3, 3]) assert out.dtype == input.dtype class DeformConvTester(OpTester, unittest.TestCase): def expected_fn(self, x, weight, offset, bias, stride=1, padding=0, dilation=1): stride_h, stride_w = _pair(stride) pad_h, pad_w = _pair(padding) dil_h, dil_w = _pair(dilation) weight_h, weight_w = weight.shape[-2:] n_batches, n_in_channels, in_h, in_w = x.shape n_out_channels = weight.shape[0] out_h = (in_h + 2 * pad_h - (dil_h * (weight_h - 1) + 1)) // stride_h + 1 out_w = (in_w + 2 * pad_w - (dil_w * (weight_w - 1) + 1)) // stride_w + 1 n_offset_grps = offset.shape[1] // (2 * weight_h * weight_w) in_c_per_offset_grp = n_in_channels // n_offset_grps n_weight_grps = n_in_channels // weight.shape[1] in_c_per_weight_grp = weight.shape[1] out_c_per_weight_grp = n_out_channels // n_weight_grps out = torch.zeros(n_batches, n_out_channels, out_h, out_w, device=x.device, dtype=x.dtype) for b in range(n_batches): for c_out in range(n_out_channels): for i in range(out_h): for j in range(out_w): for di in range(weight_h): for dj in range(weight_w): for c in range(in_c_per_weight_grp): weight_grp = c_out // out_c_per_weight_grp c_in = weight_grp * in_c_per_weight_grp + c offset_grp = c_in // in_c_per_offset_grp offset_idx = 2 * (offset_grp * (weight_h * weight_w) + di * weight_w + dj) pi = stride_h * i - pad_h + dil_h * di + offset[b, offset_idx, i, j] pj = stride_w * j - pad_w + dil_w * dj + offset[b, offset_idx + 1, i, j] out[b, c_out, i, j] += (weight[c_out, c, di, dj] * bilinear_interpolate(x[b, c_in, :, :], pi, pj)) out += bias.view(1, n_out_channels, 1, 1) return out def get_fn_args(self, device, contiguous): batch_sz = 1 n_in_channels = 6 n_out_channels = 2 n_weight_grps = 2 n_offset_grps = 3 stride = (2, 1) pad = (1, 0) dilation = (2, 1) stride_h, stride_w = stride pad_h, pad_w = pad dil_h, dil_w = dilation weight_h, weight_w = (3, 2) in_h, in_w = (5, 4) out_h = (in_h + 2 * pad_h - (dil_h * (weight_h - 1) + 1)) // stride_h + 1 out_w = (in_w + 2 * pad_w - (dil_w * (weight_w - 1) + 1)) // stride_w + 1 x = torch.rand(batch_sz, n_in_channels, in_h, in_w, device=device, dtype=self.dtype, requires_grad=True) offset = torch.randn(batch_sz, n_offset_grps * 2 * weight_h * weight_w, out_h, out_w, device=device, dtype=self.dtype, requires_grad=True) weight = torch.randn(n_out_channels, n_in_channels // n_weight_grps, weight_h, weight_w, device=device, dtype=self.dtype, requires_grad=True) bias = torch.randn(n_out_channels, device=device, dtype=self.dtype, requires_grad=True) if not contiguous: x = x.permute(0, 1, 3, 2).contiguous().permute(0, 1, 3, 2) offset = offset.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1) weight = weight.permute(3, 2, 0, 1).contiguous().permute(2, 3, 1, 0) return x, weight, offset, bias, stride, pad, dilation def _test_forward(self, device, contiguous): x, _, offset, _, stride, padding, dilation = self.get_fn_args(device, contiguous) in_channels = 6 out_channels = 2 kernel_size = (3, 2) groups = 2 layer = ops.DeformConv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups).to(device=x.device, dtype=x.dtype) res = layer(x, offset) weight = layer.weight.data bias = layer.bias.data expected = self.expected_fn(x, weight, offset, bias, stride=stride, padding=padding, dilation=dilation) self.assertTrue(torch.allclose(res, expected), '\nres:\n{}\nexpected:\n{}'.format(res, expected)) # test for wrong sizes with self.assertRaises(RuntimeError): wrong_offset = torch.rand_like(offset[:, :2]) res = layer(x, wrong_offset) def _test_backward(self, device, contiguous): x, weight, offset, bias, stride, padding, dilation = self.get_fn_args(device, contiguous) def func(x_, offset_, weight_, bias_): return ops.deform_conv2d(x_, offset_, weight_, bias_, stride=stride, padding=padding, dilation=dilation) gradcheck(func, (x, offset, weight, bias), nondet_tol=1e-5) @torch.jit.script def script_func(x_, offset_, weight_, bias_, stride_, pad_, dilation_): # type: (Tensor, Tensor, Tensor, Tensor, Tuple[int, int], Tuple[int, int], Tuple[int, int]) -> Tensor return ops.deform_conv2d(x_, offset_, weight_, bias_, stride=stride_, padding=pad_, dilation=dilation_) gradcheck(lambda z, off, wei, bi: script_func(z, off, wei, bi, stride, padding, dilation), (x, offset, weight, bias), nondet_tol=1e-5) if __name__ == '__main__': unittest.main()