import torch.nn as nn __all__ = [ 'VGG', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn', 'vgg19_bn', 'vgg19', ] class VGG(nn.Module): def __init__(self, features): super(VGG, self).__init__() self.features = features self.classifier = nn.Sequential( nn.Dropout(), nn.Linear(512 * 7 * 7, 4096), nn.ReLU(True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(True), nn.Linear(4096, 1000), ) def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.classifier(x) return x def make_layers(cfg, batch_norm=False): layers = [] in_channels = 3 for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v return nn.Sequential(*layers) cfg = { 'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], 'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], } def vgg11(): return VGG(make_layers(cfg['A'])) def vgg11_bn(): return VGG(make_layers(cfg['A'], batch_norm=True)) def vgg13(): return VGG(make_layers(cfg['B'])) def vgg13_bn(): return VGG(make_layers(cfg['B'], batch_norm=True)) def vgg16(): return VGG(make_layers(cfg['D'])) def vgg16_bn(): return VGG(make_layers(cfg['D'], batch_norm=True)) def vgg19(): return VGG(make_layers(cfg['E'])) def vgg19_bn(): return VGG(make_layers(cfg['E'], batch_norm=True))