#include "nms_kernel.h" namespace vision { namespace ops { namespace { template at::Tensor nms_kernel_impl( const at::Tensor& dets, const at::Tensor& scores, double iou_threshold) { TORCH_CHECK(!dets.is_cuda(), "dets must be a CPU tensor"); TORCH_CHECK(!scores.is_cuda(), "scores must be a CPU tensor"); TORCH_CHECK( dets.scalar_type() == scores.scalar_type(), "dets should have the same type as scores"); if (dets.numel() == 0) return at::empty({0}, dets.options().dtype(at::kLong)); auto x1_t = dets.select(1, 0).contiguous(); auto y1_t = dets.select(1, 1).contiguous(); auto x2_t = dets.select(1, 2).contiguous(); auto y2_t = dets.select(1, 3).contiguous(); at::Tensor areas_t = (x2_t - x1_t) * (y2_t - y1_t); auto order_t = std::get<1>(scores.sort(0, /* descending=*/true)); auto ndets = dets.size(0); at::Tensor suppressed_t = at::zeros({ndets}, dets.options().dtype(at::kByte)); at::Tensor keep_t = at::zeros({ndets}, dets.options().dtype(at::kLong)); auto suppressed = suppressed_t.data_ptr(); auto keep = keep_t.data_ptr(); auto order = order_t.data_ptr(); auto x1 = x1_t.data_ptr(); auto y1 = y1_t.data_ptr(); auto x2 = x2_t.data_ptr(); auto y2 = y2_t.data_ptr(); auto areas = areas_t.data_ptr(); int64_t num_to_keep = 0; for (int64_t _i = 0; _i < ndets; _i++) { auto i = order[_i]; if (suppressed[i] == 1) continue; keep[num_to_keep++] = i; auto ix1 = x1[i]; auto iy1 = y1[i]; auto ix2 = x2[i]; auto iy2 = y2[i]; auto iarea = areas[i]; for (int64_t _j = _i + 1; _j < ndets; _j++) { auto j = order[_j]; if (suppressed[j] == 1) continue; auto xx1 = std::max(ix1, x1[j]); auto yy1 = std::max(iy1, y1[j]); auto xx2 = std::min(ix2, x2[j]); auto yy2 = std::min(iy2, y2[j]); auto w = std::max(static_cast(0), xx2 - xx1); auto h = std::max(static_cast(0), yy2 - yy1); auto inter = w * h; auto ovr = inter / (iarea + areas[j] - inter); if (ovr > iou_threshold) suppressed[j] = 1; } } return keep_t.narrow(/*dim=*/0, /*start=*/0, /*length=*/num_to_keep); } } // namespace at::Tensor nms_cpu( const at::Tensor& dets, const at::Tensor& scores, double iou_threshold) { TORCH_CHECK( dets.dim() == 2, "boxes should be a 2d tensor, got ", dets.dim(), "D"); TORCH_CHECK( dets.size(1) == 4, "boxes should have 4 elements in dimension 1, got ", dets.size(1)); TORCH_CHECK( scores.dim() == 1, "scores should be a 1d tensor, got ", scores.dim(), "D"); TORCH_CHECK( dets.size(0) == scores.size(0), "boxes and scores should have same number of elements in ", "dimension 0, got ", dets.size(0), " and ", scores.size(0)); auto result = at::empty({0}, dets.options()); AT_DISPATCH_FLOATING_TYPES(dets.scalar_type(), "nms_cpu", [&] { result = nms_kernel_impl(dets, scores, iou_threshold); }); return result; } } // namespace ops } // namespace vision