Commit f0d3daa7 authored by Zhicheng Yan's avatar Zhicheng Yan Committed by Francisco Massa
Browse files

move sampler into TV core. Update UniformClipSampler (#1408)

* move sampler into TV core. Update UniformClipSampler

* Fix reference training script

* Skip test if pyav not available

* change interpolation from round() to floor() as round(0.5) behaves differently between py2 and py3
parent edfd5a77
...@@ -11,9 +11,10 @@ from torch import nn ...@@ -11,9 +11,10 @@ from torch import nn
import torchvision import torchvision
import torchvision.datasets.video_utils import torchvision.datasets.video_utils
from torchvision import transforms from torchvision import transforms
from torchvision.datasets.samplers import DistributedSampler, UniformClipSampler, RandomClipSampler
import utils import utils
from sampler import DistributedSampler, UniformClipSampler, RandomClipSampler
from scheduler import WarmupMultiStepLR from scheduler import WarmupMultiStepLR
import transforms as T import transforms as T
......
import contextlib
import sys
import os
import torch
import unittest
from torchvision import io
from torchvision.datasets.samplers import RandomClipSampler, UniformClipSampler
from torchvision.datasets.video_utils import VideoClips, unfold
from torchvision import get_video_backend
from common_utils import get_tmp_dir
@contextlib.contextmanager
def get_list_of_videos(num_videos=5, sizes=None, fps=None):
with get_tmp_dir() as tmp_dir:
names = []
for i in range(num_videos):
if sizes is None:
size = 5 * (i + 1)
else:
size = sizes[i]
if fps is None:
f = 5
else:
f = fps[i]
data = torch.randint(0, 255, (size, 300, 400, 3), dtype=torch.uint8)
name = os.path.join(tmp_dir, "{}.mp4".format(i))
names.append(name)
io.write_video(name, data, fps=f)
yield names
@unittest.skipIf(not io.video._av_available(), "this test requires av")
class Tester(unittest.TestCase):
def test_random_clip_sampler(self):
with get_list_of_videos(num_videos=3, sizes=[25, 25, 25]) as video_list:
video_clips = VideoClips(video_list, 5, 5)
sampler = RandomClipSampler(video_clips, 3)
self.assertEqual(len(sampler), 3 * 3)
indices = torch.tensor(list(iter(sampler)))
videos = indices // 5
v_idxs, count = torch.unique(videos, return_counts=True)
self.assertTrue(v_idxs.equal(torch.tensor([0, 1, 2])))
self.assertTrue(count.equal(torch.tensor([3, 3, 3])))
def test_random_clip_sampler_unequal(self):
with get_list_of_videos(num_videos=3, sizes=[10, 25, 25]) as video_list:
video_clips = VideoClips(video_list, 5, 5)
sampler = RandomClipSampler(video_clips, 3)
self.assertEqual(len(sampler), 2 + 3 + 3)
indices = list(iter(sampler))
self.assertIn(0, indices)
self.assertIn(1, indices)
# remove elements of the first video, to simplify testing
indices.remove(0)
indices.remove(1)
indices = torch.tensor(indices) - 2
videos = indices // 5
v_idxs, count = torch.unique(videos, return_counts=True)
self.assertTrue(v_idxs.equal(torch.tensor([0, 1])))
self.assertTrue(count.equal(torch.tensor([3, 3])))
def test_uniform_clip_sampler(self):
with get_list_of_videos(num_videos=3, sizes=[25, 25, 25]) as video_list:
video_clips = VideoClips(video_list, 5, 5)
sampler = UniformClipSampler(video_clips, 3)
self.assertEqual(len(sampler), 3 * 3)
indices = torch.tensor(list(iter(sampler)))
videos = indices // 5
v_idxs, count = torch.unique(videos, return_counts=True)
self.assertTrue(v_idxs.equal(torch.tensor([0, 1, 2])))
self.assertTrue(count.equal(torch.tensor([3, 3, 3])))
self.assertTrue(indices.equal(torch.tensor([0, 2, 4, 5, 7, 9, 10, 12, 14])))
def test_uniform_clip_sampler_insufficient_clips(self):
with get_list_of_videos(num_videos=3, sizes=[10, 25, 25]) as video_list:
video_clips = VideoClips(video_list, 5, 5)
sampler = UniformClipSampler(video_clips, 3)
self.assertEqual(len(sampler), 3 * 3)
indices = torch.tensor(list(iter(sampler)))
self.assertTrue(indices.equal(torch.tensor([0, 0, 1, 2, 4, 6, 7, 9, 11])))
if __name__ == '__main__':
unittest.main()
...@@ -83,36 +83,6 @@ class Tester(unittest.TestCase): ...@@ -83,36 +83,6 @@ class Tester(unittest.TestCase):
self.assertEqual(video_idx, v_idx) self.assertEqual(video_idx, v_idx)
self.assertEqual(clip_idx, c_idx) self.assertEqual(clip_idx, c_idx)
@unittest.skip("Moved to reference scripts for now")
def test_video_sampler(self):
with get_list_of_videos(num_videos=3, sizes=[25, 25, 25]) as video_list:
video_clips = VideoClips(video_list, 5, 5)
sampler = RandomClipSampler(video_clips, 3) # noqa: F821
self.assertEqual(len(sampler), 3 * 3)
indices = torch.tensor(list(iter(sampler)))
videos = indices // 5
v_idxs, count = torch.unique(videos, return_counts=True)
self.assertTrue(v_idxs.equal(torch.tensor([0, 1, 2])))
self.assertTrue(count.equal(torch.tensor([3, 3, 3])))
@unittest.skip("Moved to reference scripts for now")
def test_video_sampler_unequal(self):
with get_list_of_videos(num_videos=3, sizes=[10, 25, 25]) as video_list:
video_clips = VideoClips(video_list, 5, 5)
sampler = RandomClipSampler(video_clips, 3) # noqa: F821
self.assertEqual(len(sampler), 2 + 3 + 3)
indices = list(iter(sampler))
self.assertIn(0, indices)
self.assertIn(1, indices)
# remove elements of the first video, to simplify testing
indices.remove(0)
indices.remove(1)
indices = torch.tensor(indices) - 2
videos = indices // 5
v_idxs, count = torch.unique(videos, return_counts=True)
self.assertTrue(v_idxs.equal(torch.tensor([0, 1])))
self.assertTrue(count.equal(torch.tensor([3, 3])))
@unittest.skipIf(not io.video._av_available(), "this test requires av") @unittest.skipIf(not io.video._av_available(), "this test requires av")
@unittest.skipIf('win' in sys.platform, 'temporarily disabled on Windows') @unittest.skipIf('win' in sys.platform, 'temporarily disabled on Windows')
def test_video_clips_custom_fps(self): def test_video_clips_custom_fps(self):
......
from .clip_sampler import DistributedSampler, UniformClipSampler, RandomClipSampler
__all__ = ('DistributedSampler', 'UniformClipSampler', 'RandomClipSampler')
...@@ -60,33 +60,45 @@ class DistributedSampler(Sampler): ...@@ -60,33 +60,45 @@ class DistributedSampler(Sampler):
class UniformClipSampler(torch.utils.data.Sampler): class UniformClipSampler(torch.utils.data.Sampler):
""" """
Samples at most `max_video_clips_per_video` clips for each video, equally spaced Sample `num_video_clips_per_video` clips for each video, equally spaced.
When number of unique clips in the video is fewer than num_video_clips_per_video,
repeat the clips until `num_video_clips_per_video` clips are collected
Arguments: Arguments:
video_clips (VideoClips): video clips to sample from video_clips (VideoClips): video clips to sample from
max_clips_per_video (int): maximum number of clips to be sampled per video num_clips_per_video (int): number of clips to be sampled per video
""" """
def __init__(self, video_clips, max_clips_per_video): def __init__(self, video_clips, num_clips_per_video):
if not isinstance(video_clips, torchvision.datasets.video_utils.VideoClips): if not isinstance(video_clips, torchvision.datasets.video_utils.VideoClips):
raise TypeError("Expected video_clips to be an instance of VideoClips, " raise TypeError("Expected video_clips to be an instance of VideoClips, "
"got {}".format(type(video_clips))) "got {}".format(type(video_clips)))
self.video_clips = video_clips self.video_clips = video_clips
self.max_clips_per_video = max_clips_per_video self.num_clips_per_video = num_clips_per_video
def __iter__(self): def __iter__(self):
idxs = [] idxs = []
s = 0 s = 0
# select at most max_clips_per_video for each video, uniformly spaced # select num_clips_per_video for each video, uniformly spaced
for c in self.video_clips.clips: for c in self.video_clips.clips:
length = len(c) length = len(c)
step = max(length // self.max_clips_per_video, 1) if length == 0:
sampled = torch.arange(length)[::step] + s # corner case where video decoding fails
continue
sampled = (
torch.linspace(s, s + length - 1, steps=self.num_clips_per_video)
.floor()
.to(torch.int64)
)
s += length s += length
idxs.append(sampled) idxs.append(sampled)
idxs = torch.cat(idxs).tolist() idxs = torch.cat(idxs).tolist()
return iter(idxs) return iter(idxs)
def __len__(self): def __len__(self):
return sum(min(len(c), self.max_clips_per_video) for c in self.video_clips.clips) return sum(
self.num_clips_per_video for c in self.video_clips.clips if len(c) > 0
)
class RandomClipSampler(torch.utils.data.Sampler): class RandomClipSampler(torch.utils.data.Sampler):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment