Unverified Commit d9338f32 authored by harishsdev's avatar harishsdev Committed by GitHub
Browse files

Add more transform examples in gallery

parent 7a464a77
......@@ -89,3 +89,69 @@ plot(rotated_img, "Rotated image")
# performs random affine transform on an image.
affined_img = T.RandomAffine(degrees=(30, 70), translate=(0.1, 0.3), scale=(0.5, 0.75))(orig_img)
plot(affined_img, "Affine transformed image")
####################################
# RandomCrop
# ----------
# The :class:`~torchvision.transforms.RandomCrop` transform
# (see also :func:`~torchvision.transforms.functional.crop`)
# crops an image at a random location.
crop = T.RandomCrop(size=(128, 128))(orig_img)
plot(crop, "Random crop")
####################################
# RandomResizedCrop
# -----------------
# The :class:`~torchvision.transforms.RandomResizedCrop` transform
# (see also :func:`~torchvision.transforms.functional.resized_crop`)
# crops an image at a random location, and then resizes the crop to a given
# size.
resized_crop = T.RandomResizedCrop(size=(32, 32))(orig_img)
plot(resized_crop, "Random resized crop")
####################################
# RandomHorizontalFlip
# --------------------
# The :class:`~torchvision.transforms.RandomHorizontalFlip` transform
# (see also :func:`~torchvision.transforms.functional.hflip`)
# performs horizontal flip of an image, with a given probability.
#
# .. note::
# Since the transform is applied randomly, the two images below may actually be
# the same.
random_hflip = T.RandomHorizontalFlip(p=0.5)(orig_img)
plot(random_hflip, "Random horizontal flip")
####################################
# RandomVerticalFlip
# ------------------
# The :class:`~torchvision.transforms.RandomVerticalFlip` transform
# (see also :func:`~torchvision.transforms.functional.vflip`)
# performs vertical flip of an image, with a given probability.
#
# .. note::
# Since the transform is applied randomly, the two images below may actually be
# the same.
random_vflip = T.RandomVerticalFlip(p=0.5)(orig_img)
plot(random_vflip, "Random vertical flip")
####################################
# RandomApply
# -----------
# The :class:`~torchvision.transforms.RandomApply` transform
# randomly applies a list of transforms, with a given probability
#
# .. note::
# Since the transform is applied randomly, the two images below may actually be
# the same.
random_apply = T.RandomApply(transforms=[T.RandomCrop(size=(64, 64))], p=0.5)(orig_img)
plot(random_apply, "Random Apply transform")
####################################
# GaussianBlur
# ------------
# The :class:`~torchvision.transforms.GaussianBlur` transform
# (see also :func:`~torchvision.transforms.functional.gaussian_blur`)
# performs gaussianblur transform on an image.
gaus_blur_img = T.GaussianBlur(kernel_size=(5, 9), sigma=(0.4, 3.0))(orig_img)
plot(gaus_blur_img, "Gaussian Blur of image")
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment