Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
vision
Commits
d4d20f01
Unverified
Commit
d4d20f01
authored
Feb 16, 2023
by
Philip Meier
Committed by
GitHub
Feb 16, 2023
Browse files
make type alias private (#7266)
parent
e405f3c3
Changes
24
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
96 additions
and
96 deletions
+96
-96
torchvision/datapoints/__init__.py
torchvision/datapoints/__init__.py
+3
-3
torchvision/datapoints/_bounding_box.py
torchvision/datapoints/_bounding_box.py
+5
-5
torchvision/datapoints/_datapoint.py
torchvision/datapoints/_datapoint.py
+8
-8
torchvision/datapoints/_image.py
torchvision/datapoints/_image.py
+9
-9
torchvision/datapoints/_mask.py
torchvision/datapoints/_mask.py
+5
-5
torchvision/datapoints/_video.py
torchvision/datapoints/_video.py
+9
-9
torchvision/prototype/transforms/_augment.py
torchvision/prototype/transforms/_augment.py
+5
-5
torchvision/prototype/transforms/_geometry.py
torchvision/prototype/transforms/_geometry.py
+1
-1
torchvision/prototype/transforms/_misc.py
torchvision/prototype/transforms/_misc.py
+2
-2
torchvision/transforms/v2/_augment.py
torchvision/transforms/v2/_augment.py
+2
-2
torchvision/transforms/v2/_auto_augment.py
torchvision/transforms/v2/_auto_augment.py
+10
-10
torchvision/transforms/v2/_color.py
torchvision/transforms/v2/_color.py
+4
-4
torchvision/transforms/v2/_geometry.py
torchvision/transforms/v2/_geometry.py
+9
-9
torchvision/transforms/v2/_meta.py
torchvision/transforms/v2/_meta.py
+2
-2
torchvision/transforms/v2/_misc.py
torchvision/transforms/v2/_misc.py
+1
-1
torchvision/transforms/v2/_temporal.py
torchvision/transforms/v2/_temporal.py
+1
-1
torchvision/transforms/v2/_utils.py
torchvision/transforms/v2/_utils.py
+4
-4
torchvision/transforms/v2/functional/_augment.py
torchvision/transforms/v2/functional/_augment.py
+2
-2
torchvision/transforms/v2/functional/_color.py
torchvision/transforms/v2/functional/_color.py
+13
-13
torchvision/transforms/v2/functional/_deprecated.py
torchvision/transforms/v2/functional/_deprecated.py
+1
-1
No files found.
torchvision/datapoints/__init__.py
View file @
d4d20f01
from
._bounding_box
import
BoundingBox
,
BoundingBoxFormat
from
._datapoint
import
FillType
,
FillTypeJIT
,
InputType
,
InputTypeJIT
from
._image
import
Image
,
ImageType
,
ImageTypeJIT
,
TensorImageType
,
TensorImageTypeJIT
from
._datapoint
import
_
FillType
,
_
FillTypeJIT
,
_
InputType
,
_
InputTypeJIT
from
._image
import
_
ImageType
,
_
ImageTypeJIT
,
_
TensorImageType
,
_
TensorImageTypeJIT
,
Image
from
._mask
import
Mask
from
._video
import
TensorVideoType
,
TensorVideoTypeJIT
,
Video
,
VideoType
,
VideoTypeJIT
from
._video
import
_
TensorVideoType
,
_
TensorVideoTypeJIT
,
_
VideoType
,
_
VideoTypeJIT
,
Video
from
._dataset_wrapper
import
wrap_dataset_for_transforms_v2
# type: ignore[attr-defined] # usort: skip
torchvision/datapoints/_bounding_box.py
View file @
d4d20f01
...
...
@@ -6,7 +6,7 @@ import torch
from
torchvision._utils
import
StrEnum
from
torchvision.transforms
import
InterpolationMode
# TODO: this needs to be moved out of transforms
from
._datapoint
import
Datapoint
,
FillTypeJIT
from
._datapoint
import
_FillTypeJIT
,
Datapoint
class
BoundingBoxFormat
(
StrEnum
):
...
...
@@ -136,7 +136,7 @@ class BoundingBox(Datapoint):
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
NEAREST
,
expand
:
bool
=
False
,
center
:
Optional
[
List
[
float
]]
=
None
,
fill
:
FillTypeJIT
=
None
,
fill
:
_
FillTypeJIT
=
None
,
)
->
BoundingBox
:
output
,
spatial_size
=
self
.
_F
.
rotate_bounding_box
(
self
.
as_subclass
(
torch
.
Tensor
),
...
...
@@ -155,7 +155,7 @@ class BoundingBox(Datapoint):
scale
:
float
,
shear
:
List
[
float
],
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
NEAREST
,
fill
:
FillTypeJIT
=
None
,
fill
:
_
FillTypeJIT
=
None
,
center
:
Optional
[
List
[
float
]]
=
None
,
)
->
BoundingBox
:
output
=
self
.
_F
.
affine_bounding_box
(
...
...
@@ -175,7 +175,7 @@ class BoundingBox(Datapoint):
startpoints
:
Optional
[
List
[
List
[
int
]]],
endpoints
:
Optional
[
List
[
List
[
int
]]],
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
BILINEAR
,
fill
:
FillTypeJIT
=
None
,
fill
:
_
FillTypeJIT
=
None
,
coefficients
:
Optional
[
List
[
float
]]
=
None
,
)
->
BoundingBox
:
output
=
self
.
_F
.
perspective_bounding_box
(
...
...
@@ -192,7 +192,7 @@ class BoundingBox(Datapoint):
self
,
displacement
:
torch
.
Tensor
,
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
BILINEAR
,
fill
:
FillTypeJIT
=
None
,
fill
:
_
FillTypeJIT
=
None
,
)
->
BoundingBox
:
output
=
self
.
_F
.
elastic_bounding_box
(
self
.
as_subclass
(
torch
.
Tensor
),
self
.
format
,
self
.
spatial_size
,
displacement
=
displacement
...
...
torchvision/datapoints/_datapoint.py
View file @
d4d20f01
...
...
@@ -11,8 +11,8 @@ from torchvision.transforms import InterpolationMode
D
=
TypeVar
(
"D"
,
bound
=
"Datapoint"
)
FillType
=
Union
[
int
,
float
,
Sequence
[
int
],
Sequence
[
float
],
None
]
FillTypeJIT
=
Optional
[
List
[
float
]]
_
FillType
=
Union
[
int
,
float
,
Sequence
[
int
],
Sequence
[
float
],
None
]
_
FillTypeJIT
=
Optional
[
List
[
float
]]
class
Datapoint
(
torch
.
Tensor
):
...
...
@@ -181,7 +181,7 @@ class Datapoint(torch.Tensor):
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
NEAREST
,
expand
:
bool
=
False
,
center
:
Optional
[
List
[
float
]]
=
None
,
fill
:
FillTypeJIT
=
None
,
fill
:
_
FillTypeJIT
=
None
,
)
->
Datapoint
:
return
self
...
...
@@ -192,7 +192,7 @@ class Datapoint(torch.Tensor):
scale
:
float
,
shear
:
List
[
float
],
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
NEAREST
,
fill
:
FillTypeJIT
=
None
,
fill
:
_
FillTypeJIT
=
None
,
center
:
Optional
[
List
[
float
]]
=
None
,
)
->
Datapoint
:
return
self
...
...
@@ -202,7 +202,7 @@ class Datapoint(torch.Tensor):
startpoints
:
Optional
[
List
[
List
[
int
]]],
endpoints
:
Optional
[
List
[
List
[
int
]]],
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
BILINEAR
,
fill
:
FillTypeJIT
=
None
,
fill
:
_
FillTypeJIT
=
None
,
coefficients
:
Optional
[
List
[
float
]]
=
None
,
)
->
Datapoint
:
return
self
...
...
@@ -211,7 +211,7 @@ class Datapoint(torch.Tensor):
self
,
displacement
:
torch
.
Tensor
,
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
BILINEAR
,
fill
:
FillTypeJIT
=
None
,
fill
:
_
FillTypeJIT
=
None
,
)
->
Datapoint
:
return
self
...
...
@@ -255,5 +255,5 @@ class Datapoint(torch.Tensor):
return
self
InputType
=
Union
[
torch
.
Tensor
,
PIL
.
Image
.
Image
,
Datapoint
]
InputTypeJIT
=
torch
.
Tensor
_
InputType
=
Union
[
torch
.
Tensor
,
PIL
.
Image
.
Image
,
Datapoint
]
_
InputTypeJIT
=
torch
.
Tensor
torchvision/datapoints/_image.py
View file @
d4d20f01
...
...
@@ -6,7 +6,7 @@ import PIL.Image
import
torch
from
torchvision.transforms.functional
import
InterpolationMode
from
._datapoint
import
Datapoint
,
FillTypeJIT
from
._datapoint
import
_FillTypeJIT
,
Datapoint
class
Image
(
Datapoint
):
...
...
@@ -116,7 +116,7 @@ class Image(Datapoint):
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
NEAREST
,
expand
:
bool
=
False
,
center
:
Optional
[
List
[
float
]]
=
None
,
fill
:
FillTypeJIT
=
None
,
fill
:
_
FillTypeJIT
=
None
,
)
->
Image
:
output
=
self
.
_F
.
rotate_image_tensor
(
self
.
as_subclass
(
torch
.
Tensor
),
angle
,
interpolation
=
interpolation
,
expand
=
expand
,
fill
=
fill
,
center
=
center
...
...
@@ -130,7 +130,7 @@ class Image(Datapoint):
scale
:
float
,
shear
:
List
[
float
],
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
NEAREST
,
fill
:
FillTypeJIT
=
None
,
fill
:
_
FillTypeJIT
=
None
,
center
:
Optional
[
List
[
float
]]
=
None
,
)
->
Image
:
output
=
self
.
_F
.
affine_image_tensor
(
...
...
@@ -150,7 +150,7 @@ class Image(Datapoint):
startpoints
:
Optional
[
List
[
List
[
int
]]],
endpoints
:
Optional
[
List
[
List
[
int
]]],
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
BILINEAR
,
fill
:
FillTypeJIT
=
None
,
fill
:
_
FillTypeJIT
=
None
,
coefficients
:
Optional
[
List
[
float
]]
=
None
,
)
->
Image
:
output
=
self
.
_F
.
perspective_image_tensor
(
...
...
@@ -167,7 +167,7 @@ class Image(Datapoint):
self
,
displacement
:
torch
.
Tensor
,
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
BILINEAR
,
fill
:
FillTypeJIT
=
None
,
fill
:
_
FillTypeJIT
=
None
,
)
->
Image
:
output
=
self
.
_F
.
elastic_image_tensor
(
self
.
as_subclass
(
torch
.
Tensor
),
displacement
,
interpolation
=
interpolation
,
fill
=
fill
...
...
@@ -241,7 +241,7 @@ class Image(Datapoint):
return
Image
.
wrap_like
(
self
,
output
)
ImageType
=
Union
[
torch
.
Tensor
,
PIL
.
Image
.
Image
,
Image
]
ImageTypeJIT
=
torch
.
Tensor
TensorImageType
=
Union
[
torch
.
Tensor
,
Image
]
TensorImageTypeJIT
=
torch
.
Tensor
_
ImageType
=
Union
[
torch
.
Tensor
,
PIL
.
Image
.
Image
,
Image
]
_
ImageTypeJIT
=
torch
.
Tensor
_
TensorImageType
=
Union
[
torch
.
Tensor
,
Image
]
_
TensorImageTypeJIT
=
torch
.
Tensor
torchvision/datapoints/_mask.py
View file @
d4d20f01
...
...
@@ -6,7 +6,7 @@ import PIL.Image
import
torch
from
torchvision.transforms
import
InterpolationMode
from
._datapoint
import
Datapoint
,
FillTypeJIT
from
._datapoint
import
_FillTypeJIT
,
Datapoint
class
Mask
(
Datapoint
):
...
...
@@ -96,7 +96,7 @@ class Mask(Datapoint):
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
NEAREST
,
expand
:
bool
=
False
,
center
:
Optional
[
List
[
float
]]
=
None
,
fill
:
FillTypeJIT
=
None
,
fill
:
_
FillTypeJIT
=
None
,
)
->
Mask
:
output
=
self
.
_F
.
rotate_mask
(
self
.
as_subclass
(
torch
.
Tensor
),
angle
,
expand
=
expand
,
center
=
center
,
fill
=
fill
)
return
Mask
.
wrap_like
(
self
,
output
)
...
...
@@ -108,7 +108,7 @@ class Mask(Datapoint):
scale
:
float
,
shear
:
List
[
float
],
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
NEAREST
,
fill
:
FillTypeJIT
=
None
,
fill
:
_
FillTypeJIT
=
None
,
center
:
Optional
[
List
[
float
]]
=
None
,
)
->
Mask
:
output
=
self
.
_F
.
affine_mask
(
...
...
@@ -127,7 +127,7 @@ class Mask(Datapoint):
startpoints
:
Optional
[
List
[
List
[
int
]]],
endpoints
:
Optional
[
List
[
List
[
int
]]],
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
NEAREST
,
fill
:
FillTypeJIT
=
None
,
fill
:
_
FillTypeJIT
=
None
,
coefficients
:
Optional
[
List
[
float
]]
=
None
,
)
->
Mask
:
output
=
self
.
_F
.
perspective_mask
(
...
...
@@ -139,7 +139,7 @@ class Mask(Datapoint):
self
,
displacement
:
torch
.
Tensor
,
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
NEAREST
,
fill
:
FillTypeJIT
=
None
,
fill
:
_
FillTypeJIT
=
None
,
)
->
Mask
:
output
=
self
.
_F
.
elastic_mask
(
self
.
as_subclass
(
torch
.
Tensor
),
displacement
,
fill
=
fill
)
return
Mask
.
wrap_like
(
self
,
output
)
torchvision/datapoints/_video.py
View file @
d4d20f01
...
...
@@ -5,7 +5,7 @@ from typing import Any, List, Optional, Tuple, Union
import
torch
from
torchvision.transforms.functional
import
InterpolationMode
from
._datapoint
import
Datapoint
,
FillTypeJIT
from
._datapoint
import
_FillTypeJIT
,
Datapoint
class
Video
(
Datapoint
):
...
...
@@ -115,7 +115,7 @@ class Video(Datapoint):
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
NEAREST
,
expand
:
bool
=
False
,
center
:
Optional
[
List
[
float
]]
=
None
,
fill
:
FillTypeJIT
=
None
,
fill
:
_
FillTypeJIT
=
None
,
)
->
Video
:
output
=
self
.
_F
.
rotate_video
(
self
.
as_subclass
(
torch
.
Tensor
),
angle
,
interpolation
=
interpolation
,
expand
=
expand
,
fill
=
fill
,
center
=
center
...
...
@@ -129,7 +129,7 @@ class Video(Datapoint):
scale
:
float
,
shear
:
List
[
float
],
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
NEAREST
,
fill
:
FillTypeJIT
=
None
,
fill
:
_
FillTypeJIT
=
None
,
center
:
Optional
[
List
[
float
]]
=
None
,
)
->
Video
:
output
=
self
.
_F
.
affine_video
(
...
...
@@ -149,7 +149,7 @@ class Video(Datapoint):
startpoints
:
Optional
[
List
[
List
[
int
]]],
endpoints
:
Optional
[
List
[
List
[
int
]]],
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
BILINEAR
,
fill
:
FillTypeJIT
=
None
,
fill
:
_
FillTypeJIT
=
None
,
coefficients
:
Optional
[
List
[
float
]]
=
None
,
)
->
Video
:
output
=
self
.
_F
.
perspective_video
(
...
...
@@ -166,7 +166,7 @@ class Video(Datapoint):
self
,
displacement
:
torch
.
Tensor
,
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
BILINEAR
,
fill
:
FillTypeJIT
=
None
,
fill
:
_
FillTypeJIT
=
None
,
)
->
Video
:
output
=
self
.
_F
.
elastic_video
(
self
.
as_subclass
(
torch
.
Tensor
),
displacement
,
interpolation
=
interpolation
,
fill
=
fill
...
...
@@ -232,7 +232,7 @@ class Video(Datapoint):
return
Video
.
wrap_like
(
self
,
output
)
VideoType
=
Union
[
torch
.
Tensor
,
Video
]
VideoTypeJIT
=
torch
.
Tensor
TensorVideoType
=
Union
[
torch
.
Tensor
,
Video
]
TensorVideoTypeJIT
=
torch
.
Tensor
_
VideoType
=
Union
[
torch
.
Tensor
,
Video
]
_
VideoTypeJIT
=
torch
.
Tensor
_
TensorVideoType
=
Union
[
torch
.
Tensor
,
Video
]
_
TensorVideoTypeJIT
=
torch
.
Tensor
torchvision/prototype/transforms/_augment.py
View file @
d4d20f01
...
...
@@ -119,15 +119,15 @@ class SimpleCopyPaste(Transform):
def
_copy_paste
(
self
,
image
:
datapoints
.
TensorImageType
,
image
:
datapoints
.
_
TensorImageType
,
target
:
Dict
[
str
,
Any
],
paste_image
:
datapoints
.
TensorImageType
,
paste_image
:
datapoints
.
_
TensorImageType
,
paste_target
:
Dict
[
str
,
Any
],
random_selection
:
torch
.
Tensor
,
blending
:
bool
,
resize_interpolation
:
F
.
InterpolationMode
,
antialias
:
Optional
[
bool
],
)
->
Tuple
[
datapoints
.
TensorImageType
,
Dict
[
str
,
Any
]]:
)
->
Tuple
[
datapoints
.
_
TensorImageType
,
Dict
[
str
,
Any
]]:
paste_masks
=
paste_target
[
"masks"
].
wrap_like
(
paste_target
[
"masks"
],
paste_target
[
"masks"
][
random_selection
])
paste_boxes
=
paste_target
[
"boxes"
].
wrap_like
(
paste_target
[
"boxes"
],
paste_target
[
"boxes"
][
random_selection
])
...
...
@@ -199,7 +199,7 @@ class SimpleCopyPaste(Transform):
def
_extract_image_targets
(
self
,
flat_sample
:
List
[
Any
]
)
->
Tuple
[
List
[
datapoints
.
TensorImageType
],
List
[
Dict
[
str
,
Any
]]]:
)
->
Tuple
[
List
[
datapoints
.
_
TensorImageType
],
List
[
Dict
[
str
,
Any
]]]:
# fetch all images, bboxes, masks and labels from unstructured input
# with List[image], List[BoundingBox], List[Mask], List[Label]
images
,
bboxes
,
masks
,
labels
=
[],
[],
[],
[]
...
...
@@ -230,7 +230,7 @@ class SimpleCopyPaste(Transform):
def
_insert_outputs
(
self
,
flat_sample
:
List
[
Any
],
output_images
:
List
[
datapoints
.
TensorImageType
],
output_images
:
List
[
datapoints
.
_
TensorImageType
],
output_targets
:
List
[
Dict
[
str
,
Any
]],
)
->
None
:
c0
,
c1
,
c2
,
c3
=
0
,
0
,
0
,
0
...
...
torchvision/prototype/transforms/_geometry.py
View file @
d4d20f01
...
...
@@ -14,7 +14,7 @@ class FixedSizeCrop(Transform):
def
__init__
(
self
,
size
:
Union
[
int
,
Sequence
[
int
]],
fill
:
Union
[
datapoints
.
FillType
,
Dict
[
Type
,
datapoints
.
FillType
]]
=
0
,
fill
:
Union
[
datapoints
.
_
FillType
,
Dict
[
Type
,
datapoints
.
_
FillType
]]
=
0
,
padding_mode
:
str
=
"constant"
,
)
->
None
:
super
().
__init__
()
...
...
torchvision/prototype/transforms/_misc.py
View file @
d4d20f01
...
...
@@ -26,7 +26,7 @@ class PermuteDimensions(Transform):
self
.
dims
=
dims
def
_transform
(
self
,
inpt
:
Union
[
datapoints
.
TensorImageType
,
datapoints
.
TensorVideoType
],
params
:
Dict
[
str
,
Any
]
self
,
inpt
:
Union
[
datapoints
.
_
TensorImageType
,
datapoints
.
_
TensorVideoType
],
params
:
Dict
[
str
,
Any
]
)
->
torch
.
Tensor
:
dims
=
self
.
dims
[
type
(
inpt
)]
if
dims
is
None
:
...
...
@@ -50,7 +50,7 @@ class TransposeDimensions(Transform):
self
.
dims
=
dims
def
_transform
(
self
,
inpt
:
Union
[
datapoints
.
TensorImageType
,
datapoints
.
TensorVideoType
],
params
:
Dict
[
str
,
Any
]
self
,
inpt
:
Union
[
datapoints
.
_
TensorImageType
,
datapoints
.
_
TensorVideoType
],
params
:
Dict
[
str
,
Any
]
)
->
torch
.
Tensor
:
dims
=
self
.
dims
[
type
(
inpt
)]
if
dims
is
None
:
...
...
torchvision/transforms/v2/_augment.py
View file @
d4d20f01
...
...
@@ -97,8 +97,8 @@ class RandomErasing(_RandomApplyTransform):
return
dict
(
i
=
i
,
j
=
j
,
h
=
h
,
w
=
w
,
v
=
v
)
def
_transform
(
self
,
inpt
:
Union
[
datapoints
.
ImageType
,
datapoints
.
VideoType
],
params
:
Dict
[
str
,
Any
]
)
->
Union
[
datapoints
.
ImageType
,
datapoints
.
VideoType
]:
self
,
inpt
:
Union
[
datapoints
.
_
ImageType
,
datapoints
.
_
VideoType
],
params
:
Dict
[
str
,
Any
]
)
->
Union
[
datapoints
.
_
ImageType
,
datapoints
.
_
VideoType
]:
if
params
[
"v"
]
is
not
None
:
inpt
=
F
.
erase
(
inpt
,
**
params
,
inplace
=
self
.
inplace
)
...
...
torchvision/transforms/v2/_auto_augment.py
View file @
d4d20f01
...
...
@@ -20,7 +20,7 @@ class _AutoAugmentBase(Transform):
self
,
*
,
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
NEAREST
,
fill
:
Union
[
datapoints
.
FillType
,
Dict
[
Type
,
datapoints
.
FillType
]]
=
None
,
fill
:
Union
[
datapoints
.
_
FillType
,
Dict
[
Type
,
datapoints
.
_
FillType
]]
=
None
,
)
->
None
:
super
().
__init__
()
self
.
interpolation
=
_check_interpolation
(
interpolation
)
...
...
@@ -35,7 +35,7 @@ class _AutoAugmentBase(Transform):
self
,
inputs
:
Any
,
unsupported_types
:
Tuple
[
Type
,
...]
=
(
datapoints
.
BoundingBox
,
datapoints
.
Mask
),
)
->
Tuple
[
Tuple
[
List
[
Any
],
TreeSpec
,
int
],
Union
[
datapoints
.
ImageType
,
datapoints
.
VideoType
]]:
)
->
Tuple
[
Tuple
[
List
[
Any
],
TreeSpec
,
int
],
Union
[
datapoints
.
_
ImageType
,
datapoints
.
_
VideoType
]]:
flat_inputs
,
spec
=
tree_flatten
(
inputs
if
len
(
inputs
)
>
1
else
inputs
[
0
])
needs_transform_list
=
self
.
_needs_transform_list
(
flat_inputs
)
...
...
@@ -68,7 +68,7 @@ class _AutoAugmentBase(Transform):
def
_unflatten_and_insert_image_or_video
(
self
,
flat_inputs_with_spec
:
Tuple
[
List
[
Any
],
TreeSpec
,
int
],
image_or_video
:
Union
[
datapoints
.
ImageType
,
datapoints
.
VideoType
],
image_or_video
:
Union
[
datapoints
.
_
ImageType
,
datapoints
.
_
VideoType
],
)
->
Any
:
flat_inputs
,
spec
,
idx
=
flat_inputs_with_spec
flat_inputs
[
idx
]
=
image_or_video
...
...
@@ -76,12 +76,12 @@ class _AutoAugmentBase(Transform):
def
_apply_image_or_video_transform
(
self
,
image
:
Union
[
datapoints
.
ImageType
,
datapoints
.
VideoType
],
image
:
Union
[
datapoints
.
_
ImageType
,
datapoints
.
_
VideoType
],
transform_id
:
str
,
magnitude
:
float
,
interpolation
:
Union
[
InterpolationMode
,
int
],
fill
:
Dict
[
Type
,
datapoints
.
FillTypeJIT
],
)
->
Union
[
datapoints
.
ImageType
,
datapoints
.
VideoType
]:
fill
:
Dict
[
Type
,
datapoints
.
_
FillTypeJIT
],
)
->
Union
[
datapoints
.
_
ImageType
,
datapoints
.
_
VideoType
]:
fill_
=
fill
[
type
(
image
)]
if
transform_id
==
"Identity"
:
...
...
@@ -194,7 +194,7 @@ class AutoAugment(_AutoAugmentBase):
self
,
policy
:
AutoAugmentPolicy
=
AutoAugmentPolicy
.
IMAGENET
,
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
NEAREST
,
fill
:
Union
[
datapoints
.
FillType
,
Dict
[
Type
,
datapoints
.
FillType
]]
=
None
,
fill
:
Union
[
datapoints
.
_
FillType
,
Dict
[
Type
,
datapoints
.
_
FillType
]]
=
None
,
)
->
None
:
super
().
__init__
(
interpolation
=
interpolation
,
fill
=
fill
)
self
.
policy
=
policy
...
...
@@ -351,7 +351,7 @@ class RandAugment(_AutoAugmentBase):
magnitude
:
int
=
9
,
num_magnitude_bins
:
int
=
31
,
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
NEAREST
,
fill
:
Union
[
datapoints
.
FillType
,
Dict
[
Type
,
datapoints
.
FillType
]]
=
None
,
fill
:
Union
[
datapoints
.
_
FillType
,
Dict
[
Type
,
datapoints
.
_
FillType
]]
=
None
,
)
->
None
:
super
().
__init__
(
interpolation
=
interpolation
,
fill
=
fill
)
self
.
num_ops
=
num_ops
...
...
@@ -404,7 +404,7 @@ class TrivialAugmentWide(_AutoAugmentBase):
self
,
num_magnitude_bins
:
int
=
31
,
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
NEAREST
,
fill
:
Union
[
datapoints
.
FillType
,
Dict
[
Type
,
datapoints
.
FillType
]]
=
None
,
fill
:
Union
[
datapoints
.
_
FillType
,
Dict
[
Type
,
datapoints
.
_
FillType
]]
=
None
,
):
super
().
__init__
(
interpolation
=
interpolation
,
fill
=
fill
)
self
.
num_magnitude_bins
=
num_magnitude_bins
...
...
@@ -462,7 +462,7 @@ class AugMix(_AutoAugmentBase):
alpha
:
float
=
1.0
,
all_ops
:
bool
=
True
,
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
BILINEAR
,
fill
:
Union
[
datapoints
.
FillType
,
Dict
[
Type
,
datapoints
.
FillType
]]
=
None
,
fill
:
Union
[
datapoints
.
_
FillType
,
Dict
[
Type
,
datapoints
.
_
FillType
]]
=
None
,
)
->
None
:
super
().
__init__
(
interpolation
=
interpolation
,
fill
=
fill
)
self
.
_PARAMETER_MAX
=
10
...
...
torchvision/transforms/v2/_color.py
View file @
d4d20f01
...
...
@@ -163,8 +163,8 @@ class RandomPhotometricDistort(Transform):
)
def
_permute_channels
(
self
,
inpt
:
Union
[
datapoints
.
ImageType
,
datapoints
.
VideoType
],
permutation
:
torch
.
Tensor
)
->
Union
[
datapoints
.
ImageType
,
datapoints
.
VideoType
]:
self
,
inpt
:
Union
[
datapoints
.
_
ImageType
,
datapoints
.
_
VideoType
],
permutation
:
torch
.
Tensor
)
->
Union
[
datapoints
.
_
ImageType
,
datapoints
.
_
VideoType
]:
orig_inpt
=
inpt
if
isinstance
(
orig_inpt
,
PIL
.
Image
.
Image
):
...
...
@@ -179,8 +179,8 @@ class RandomPhotometricDistort(Transform):
return
output
def
_transform
(
self
,
inpt
:
Union
[
datapoints
.
ImageType
,
datapoints
.
VideoType
],
params
:
Dict
[
str
,
Any
]
)
->
Union
[
datapoints
.
ImageType
,
datapoints
.
VideoType
]:
self
,
inpt
:
Union
[
datapoints
.
_
ImageType
,
datapoints
.
_
VideoType
],
params
:
Dict
[
str
,
Any
]
)
->
Union
[
datapoints
.
_
ImageType
,
datapoints
.
_
VideoType
]:
if
params
[
"brightness"
]:
inpt
=
F
.
adjust_brightness
(
inpt
,
brightness_factor
=
ColorJitter
.
_generate_value
(
self
.
brightness
[
0
],
self
.
brightness
[
1
])
...
...
torchvision/transforms/v2/_geometry.py
View file @
d4d20f01
...
...
@@ -160,7 +160,7 @@ class RandomResizedCrop(Transform):
)
ImageOrVideoTypeJIT
=
Union
[
datapoints
.
ImageTypeJIT
,
datapoints
.
VideoTypeJIT
]
ImageOrVideoTypeJIT
=
Union
[
datapoints
.
_
ImageTypeJIT
,
datapoints
.
_
VideoTypeJIT
]
class
FiveCrop
(
Transform
):
...
...
@@ -232,7 +232,7 @@ class TenCrop(Transform):
raise
TypeError
(
f
"BoundingBox'es and Mask's are not supported by
{
type
(
self
).
__name__
}
()"
)
def
_transform
(
self
,
inpt
:
Union
[
datapoints
.
ImageType
,
datapoints
.
VideoType
],
params
:
Dict
[
str
,
Any
]
self
,
inpt
:
Union
[
datapoints
.
_
ImageType
,
datapoints
.
_
VideoType
],
params
:
Dict
[
str
,
Any
]
)
->
Tuple
[
ImageOrVideoTypeJIT
,
ImageOrVideoTypeJIT
,
...
...
@@ -264,7 +264,7 @@ class Pad(Transform):
def
__init__
(
self
,
padding
:
Union
[
int
,
Sequence
[
int
]],
fill
:
Union
[
datapoints
.
FillType
,
Dict
[
Type
,
datapoints
.
FillType
]]
=
0
,
fill
:
Union
[
datapoints
.
_
FillType
,
Dict
[
Type
,
datapoints
.
_
FillType
]]
=
0
,
padding_mode
:
Literal
[
"constant"
,
"edge"
,
"reflect"
,
"symmetric"
]
=
"constant"
,
)
->
None
:
super
().
__init__
()
...
...
@@ -287,7 +287,7 @@ class Pad(Transform):
class
RandomZoomOut
(
_RandomApplyTransform
):
def
__init__
(
self
,
fill
:
Union
[
datapoints
.
FillType
,
Dict
[
Type
,
datapoints
.
FillType
]]
=
0
,
fill
:
Union
[
datapoints
.
_
FillType
,
Dict
[
Type
,
datapoints
.
_
FillType
]]
=
0
,
side_range
:
Sequence
[
float
]
=
(
1.0
,
4.0
),
p
:
float
=
0.5
,
)
->
None
:
...
...
@@ -330,7 +330,7 @@ class RandomRotation(Transform):
degrees
:
Union
[
numbers
.
Number
,
Sequence
],
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
NEAREST
,
expand
:
bool
=
False
,
fill
:
Union
[
datapoints
.
FillType
,
Dict
[
Type
,
datapoints
.
FillType
]]
=
0
,
fill
:
Union
[
datapoints
.
_
FillType
,
Dict
[
Type
,
datapoints
.
_
FillType
]]
=
0
,
center
:
Optional
[
List
[
float
]]
=
None
,
)
->
None
:
super
().
__init__
()
...
...
@@ -371,7 +371,7 @@ class RandomAffine(Transform):
scale
:
Optional
[
Sequence
[
float
]]
=
None
,
shear
:
Optional
[
Union
[
int
,
float
,
Sequence
[
float
]]]
=
None
,
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
NEAREST
,
fill
:
Union
[
datapoints
.
FillType
,
Dict
[
Type
,
datapoints
.
FillType
]]
=
0
,
fill
:
Union
[
datapoints
.
_
FillType
,
Dict
[
Type
,
datapoints
.
_
FillType
]]
=
0
,
center
:
Optional
[
List
[
float
]]
=
None
,
)
->
None
:
super
().
__init__
()
...
...
@@ -464,7 +464,7 @@ class RandomCrop(Transform):
size
:
Union
[
int
,
Sequence
[
int
]],
padding
:
Optional
[
Union
[
int
,
Sequence
[
int
]]]
=
None
,
pad_if_needed
:
bool
=
False
,
fill
:
Union
[
datapoints
.
FillType
,
Dict
[
Type
,
datapoints
.
FillType
]]
=
0
,
fill
:
Union
[
datapoints
.
_
FillType
,
Dict
[
Type
,
datapoints
.
_
FillType
]]
=
0
,
padding_mode
:
Literal
[
"constant"
,
"edge"
,
"reflect"
,
"symmetric"
]
=
"constant"
,
)
->
None
:
super
().
__init__
()
...
...
@@ -556,7 +556,7 @@ class RandomPerspective(_RandomApplyTransform):
def
__init__
(
self
,
distortion_scale
:
float
=
0.5
,
fill
:
Union
[
datapoints
.
FillType
,
Dict
[
Type
,
datapoints
.
FillType
]]
=
0
,
fill
:
Union
[
datapoints
.
_
FillType
,
Dict
[
Type
,
datapoints
.
_
FillType
]]
=
0
,
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
BILINEAR
,
p
:
float
=
0.5
,
)
->
None
:
...
...
@@ -618,7 +618,7 @@ class ElasticTransform(Transform):
self
,
alpha
:
Union
[
float
,
Sequence
[
float
]]
=
50.0
,
sigma
:
Union
[
float
,
Sequence
[
float
]]
=
5.0
,
fill
:
Union
[
datapoints
.
FillType
,
Dict
[
Type
,
datapoints
.
FillType
]]
=
0
,
fill
:
Union
[
datapoints
.
_
FillType
,
Dict
[
Type
,
datapoints
.
_
FillType
]]
=
0
,
interpolation
:
Union
[
InterpolationMode
,
int
]
=
InterpolationMode
.
BILINEAR
,
)
->
None
:
super
().
__init__
()
...
...
torchvision/transforms/v2/_meta.py
View file @
d4d20f01
...
...
@@ -31,8 +31,8 @@ class ConvertDtype(Transform):
self
.
dtype
=
dtype
def
_transform
(
self
,
inpt
:
Union
[
datapoints
.
TensorImageType
,
datapoints
.
TensorVideoType
],
params
:
Dict
[
str
,
Any
]
)
->
Union
[
datapoints
.
TensorImageType
,
datapoints
.
TensorVideoType
]:
self
,
inpt
:
Union
[
datapoints
.
_
TensorImageType
,
datapoints
.
_
TensorVideoType
],
params
:
Dict
[
str
,
Any
]
)
->
Union
[
datapoints
.
_
TensorImageType
,
datapoints
.
_
TensorVideoType
]:
return
F
.
convert_dtype
(
inpt
,
self
.
dtype
)
...
...
torchvision/transforms/v2/_misc.py
View file @
d4d20f01
...
...
@@ -119,7 +119,7 @@ class Normalize(Transform):
raise
TypeError
(
f
"
{
type
(
self
).
__name__
}
() does not support PIL images."
)
def
_transform
(
self
,
inpt
:
Union
[
datapoints
.
TensorImageType
,
datapoints
.
TensorVideoType
],
params
:
Dict
[
str
,
Any
]
self
,
inpt
:
Union
[
datapoints
.
_
TensorImageType
,
datapoints
.
_
TensorVideoType
],
params
:
Dict
[
str
,
Any
]
)
->
Any
:
return
F
.
normalize
(
inpt
,
mean
=
self
.
mean
,
std
=
self
.
std
,
inplace
=
self
.
inplace
)
...
...
torchvision/transforms/v2/_temporal.py
View file @
d4d20f01
...
...
@@ -13,5 +13,5 @@ class UniformTemporalSubsample(Transform):
super
().
__init__
()
self
.
num_samples
=
num_samples
def
_transform
(
self
,
inpt
:
datapoints
.
VideoType
,
params
:
Dict
[
str
,
Any
])
->
datapoints
.
VideoType
:
def
_transform
(
self
,
inpt
:
datapoints
.
_
VideoType
,
params
:
Dict
[
str
,
Any
])
->
datapoints
.
_
VideoType
:
return
F
.
uniform_temporal_subsample
(
inpt
,
self
.
num_samples
)
torchvision/transforms/v2/_utils.py
View file @
d4d20f01
...
...
@@ -4,7 +4,7 @@ from collections import defaultdict
from
typing
import
Any
,
Dict
,
Literal
,
Sequence
,
Type
,
TypeVar
,
Union
from
torchvision
import
datapoints
from
torchvision.datapoints._datapoint
import
FillType
,
FillTypeJIT
from
torchvision.datapoints._datapoint
import
_
FillType
,
_
FillTypeJIT
from
torchvision.transforms.transforms
import
_check_sequence_input
,
_setup_angle
,
_setup_size
# noqa: F401
...
...
@@ -26,7 +26,7 @@ def _setup_float_or_seq(arg: Union[float, Sequence[float]], name: str, req_size:
return
arg
def
_check_fill_arg
(
fill
:
Union
[
FillType
,
Dict
[
Type
,
FillType
]])
->
None
:
def
_check_fill_arg
(
fill
:
Union
[
_
FillType
,
Dict
[
Type
,
_
FillType
]])
->
None
:
if
isinstance
(
fill
,
dict
):
for
key
,
value
in
fill
.
items
():
# Check key for type
...
...
@@ -52,7 +52,7 @@ def _get_defaultdict(default: T) -> Dict[Any, T]:
return
defaultdict
(
functools
.
partial
(
_default_arg
,
default
))
def
_convert_fill_arg
(
fill
:
datapoints
.
FillType
)
->
datapoints
.
FillTypeJIT
:
def
_convert_fill_arg
(
fill
:
datapoints
.
_
FillType
)
->
datapoints
.
_
FillTypeJIT
:
# Fill = 0 is not equivalent to None, https://github.com/pytorch/vision/issues/6517
# So, we can't reassign fill to 0
# if fill is None:
...
...
@@ -65,7 +65,7 @@ def _convert_fill_arg(fill: datapoints.FillType) -> datapoints.FillTypeJIT:
return
fill
# type: ignore[return-value]
def
_setup_fill_arg
(
fill
:
Union
[
FillType
,
Dict
[
Type
,
FillType
]])
->
Dict
[
Type
,
FillTypeJIT
]:
def
_setup_fill_arg
(
fill
:
Union
[
_
FillType
,
Dict
[
Type
,
_
FillType
]])
->
Dict
[
Type
,
_
FillTypeJIT
]:
_check_fill_arg
(
fill
)
if
isinstance
(
fill
,
dict
):
...
...
torchvision/transforms/v2/functional/_augment.py
View file @
d4d20f01
...
...
@@ -36,14 +36,14 @@ def erase_video(
def
erase
(
inpt
:
Union
[
datapoints
.
ImageTypeJIT
,
datapoints
.
VideoTypeJIT
],
inpt
:
Union
[
datapoints
.
_
ImageTypeJIT
,
datapoints
.
_
VideoTypeJIT
],
i
:
int
,
j
:
int
,
h
:
int
,
w
:
int
,
v
:
torch
.
Tensor
,
inplace
:
bool
=
False
,
)
->
Union
[
datapoints
.
ImageTypeJIT
,
datapoints
.
VideoTypeJIT
]:
)
->
Union
[
datapoints
.
_
ImageTypeJIT
,
datapoints
.
_
VideoTypeJIT
]:
if
not
torch
.
jit
.
is_scripting
():
_log_api_usage_once
(
erase
)
...
...
torchvision/transforms/v2/functional/_color.py
View file @
d4d20f01
...
...
@@ -37,8 +37,8 @@ rgb_to_grayscale_image_pil = _FP.to_grayscale
def
rgb_to_grayscale
(
inpt
:
Union
[
datapoints
.
ImageTypeJIT
,
datapoints
.
VideoTypeJIT
],
num_output_channels
:
int
=
1
)
->
Union
[
datapoints
.
ImageTypeJIT
,
datapoints
.
VideoTypeJIT
]:
inpt
:
Union
[
datapoints
.
_
ImageTypeJIT
,
datapoints
.
_
VideoTypeJIT
],
num_output_channels
:
int
=
1
)
->
Union
[
datapoints
.
_
ImageTypeJIT
,
datapoints
.
_
VideoTypeJIT
]:
if
not
torch
.
jit
.
is_scripting
():
_log_api_usage_once
(
rgb_to_grayscale
)
if
num_output_channels
not
in
(
1
,
3
):
...
...
@@ -85,7 +85,7 @@ def adjust_brightness_video(video: torch.Tensor, brightness_factor: float) -> to
return
adjust_brightness_image_tensor
(
video
,
brightness_factor
=
brightness_factor
)
def
adjust_brightness
(
inpt
:
datapoints
.
InputTypeJIT
,
brightness_factor
:
float
)
->
datapoints
.
InputTypeJIT
:
def
adjust_brightness
(
inpt
:
datapoints
.
_
InputTypeJIT
,
brightness_factor
:
float
)
->
datapoints
.
_
InputTypeJIT
:
if
not
torch
.
jit
.
is_scripting
():
_log_api_usage_once
(
adjust_brightness
)
...
...
@@ -127,7 +127,7 @@ def adjust_saturation_video(video: torch.Tensor, saturation_factor: float) -> to
return
adjust_saturation_image_tensor
(
video
,
saturation_factor
=
saturation_factor
)
def
adjust_saturation
(
inpt
:
datapoints
.
InputTypeJIT
,
saturation_factor
:
float
)
->
datapoints
.
InputTypeJIT
:
def
adjust_saturation
(
inpt
:
datapoints
.
_
InputTypeJIT
,
saturation_factor
:
float
)
->
datapoints
.
_
InputTypeJIT
:
if
not
torch
.
jit
.
is_scripting
():
_log_api_usage_once
(
adjust_saturation
)
...
...
@@ -171,7 +171,7 @@ def adjust_contrast_video(video: torch.Tensor, contrast_factor: float) -> torch.
return
adjust_contrast_image_tensor
(
video
,
contrast_factor
=
contrast_factor
)
def
adjust_contrast
(
inpt
:
datapoints
.
InputTypeJIT
,
contrast_factor
:
float
)
->
datapoints
.
InputTypeJIT
:
def
adjust_contrast
(
inpt
:
datapoints
.
_
InputTypeJIT
,
contrast_factor
:
float
)
->
datapoints
.
_
InputTypeJIT
:
if
not
torch
.
jit
.
is_scripting
():
_log_api_usage_once
(
adjust_contrast
)
...
...
@@ -247,7 +247,7 @@ def adjust_sharpness_video(video: torch.Tensor, sharpness_factor: float) -> torc
return
adjust_sharpness_image_tensor
(
video
,
sharpness_factor
=
sharpness_factor
)
def
adjust_sharpness
(
inpt
:
datapoints
.
InputTypeJIT
,
sharpness_factor
:
float
)
->
datapoints
.
InputTypeJIT
:
def
adjust_sharpness
(
inpt
:
datapoints
.
_
InputTypeJIT
,
sharpness_factor
:
float
)
->
datapoints
.
_
InputTypeJIT
:
if
not
torch
.
jit
.
is_scripting
():
_log_api_usage_once
(
adjust_sharpness
)
...
...
@@ -364,7 +364,7 @@ def adjust_hue_video(video: torch.Tensor, hue_factor: float) -> torch.Tensor:
return
adjust_hue_image_tensor
(
video
,
hue_factor
=
hue_factor
)
def
adjust_hue
(
inpt
:
datapoints
.
InputTypeJIT
,
hue_factor
:
float
)
->
datapoints
.
InputTypeJIT
:
def
adjust_hue
(
inpt
:
datapoints
.
_
InputTypeJIT
,
hue_factor
:
float
)
->
datapoints
.
_
InputTypeJIT
:
if
not
torch
.
jit
.
is_scripting
():
_log_api_usage_once
(
adjust_hue
)
...
...
@@ -407,7 +407,7 @@ def adjust_gamma_video(video: torch.Tensor, gamma: float, gain: float = 1) -> to
return
adjust_gamma_image_tensor
(
video
,
gamma
=
gamma
,
gain
=
gain
)
def
adjust_gamma
(
inpt
:
datapoints
.
InputTypeJIT
,
gamma
:
float
,
gain
:
float
=
1
)
->
datapoints
.
InputTypeJIT
:
def
adjust_gamma
(
inpt
:
datapoints
.
_
InputTypeJIT
,
gamma
:
float
,
gain
:
float
=
1
)
->
datapoints
.
_
InputTypeJIT
:
if
not
torch
.
jit
.
is_scripting
():
_log_api_usage_once
(
adjust_gamma
)
...
...
@@ -444,7 +444,7 @@ def posterize_video(video: torch.Tensor, bits: int) -> torch.Tensor:
return
posterize_image_tensor
(
video
,
bits
=
bits
)
def
posterize
(
inpt
:
datapoints
.
InputTypeJIT
,
bits
:
int
)
->
datapoints
.
InputTypeJIT
:
def
posterize
(
inpt
:
datapoints
.
_
InputTypeJIT
,
bits
:
int
)
->
datapoints
.
_
InputTypeJIT
:
if
not
torch
.
jit
.
is_scripting
():
_log_api_usage_once
(
posterize
)
...
...
@@ -475,7 +475,7 @@ def solarize_video(video: torch.Tensor, threshold: float) -> torch.Tensor:
return
solarize_image_tensor
(
video
,
threshold
=
threshold
)
def
solarize
(
inpt
:
datapoints
.
InputTypeJIT
,
threshold
:
float
)
->
datapoints
.
InputTypeJIT
:
def
solarize
(
inpt
:
datapoints
.
_
InputTypeJIT
,
threshold
:
float
)
->
datapoints
.
_
InputTypeJIT
:
if
not
torch
.
jit
.
is_scripting
():
_log_api_usage_once
(
solarize
)
...
...
@@ -528,7 +528,7 @@ def autocontrast_video(video: torch.Tensor) -> torch.Tensor:
return
autocontrast_image_tensor
(
video
)
def
autocontrast
(
inpt
:
datapoints
.
InputTypeJIT
)
->
datapoints
.
InputTypeJIT
:
def
autocontrast
(
inpt
:
datapoints
.
_
InputTypeJIT
)
->
datapoints
.
_
InputTypeJIT
:
if
not
torch
.
jit
.
is_scripting
():
_log_api_usage_once
(
autocontrast
)
...
...
@@ -621,7 +621,7 @@ def equalize_video(video: torch.Tensor) -> torch.Tensor:
return
equalize_image_tensor
(
video
)
def
equalize
(
inpt
:
datapoints
.
InputTypeJIT
)
->
datapoints
.
InputTypeJIT
:
def
equalize
(
inpt
:
datapoints
.
_
InputTypeJIT
)
->
datapoints
.
_
InputTypeJIT
:
if
not
torch
.
jit
.
is_scripting
():
_log_api_usage_once
(
equalize
)
...
...
@@ -655,7 +655,7 @@ def invert_video(video: torch.Tensor) -> torch.Tensor:
return
invert_image_tensor
(
video
)
def
invert
(
inpt
:
datapoints
.
InputTypeJIT
)
->
datapoints
.
InputTypeJIT
:
def
invert
(
inpt
:
datapoints
.
_
InputTypeJIT
)
->
datapoints
.
_
InputTypeJIT
:
if
not
torch
.
jit
.
is_scripting
():
_log_api_usage_once
(
invert
)
...
...
torchvision/transforms/v2/functional/_deprecated.py
View file @
d4d20f01
...
...
@@ -31,7 +31,7 @@ def to_tensor(inpt: Any) -> torch.Tensor:
return
_F
.
to_tensor
(
inpt
)
def
get_image_size
(
inpt
:
Union
[
datapoints
.
ImageTypeJIT
,
datapoints
.
VideoTypeJIT
])
->
List
[
int
]:
def
get_image_size
(
inpt
:
Union
[
datapoints
.
_
ImageTypeJIT
,
datapoints
.
_
VideoTypeJIT
])
->
List
[
int
]:
warnings
.
warn
(
"The function `get_image_size(...)` is deprecated and will be removed in a future release. "
"Instead, please use `get_spatial_size(...)` which returns `[h, w]` instead of `[w, h]`."
...
...
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment