@@ -131,10 +131,10 @@ class Conv2dNormActivation(ConvNormActivation):
...
@@ -131,10 +131,10 @@ class Conv2dNormActivation(ConvNormActivation):
out_channels (int): Number of channels produced by the Convolution-Normalization-Activation block
out_channels (int): Number of channels produced by the Convolution-Normalization-Activation block
kernel_size: (int, optional): Size of the convolving kernel. Default: 3
kernel_size: (int, optional): Size of the convolving kernel. Default: 3
stride (int, optional): Stride of the convolution. Default: 1
stride (int, optional): Stride of the convolution. Default: 1
padding (int, tuple or str, optional): Padding added to all four sides of the input. Default: None, in which case it will calculated as ``padding = (kernel_size - 1) // 2 * dilation``
padding (int, tuple or str, optional): Padding added to all four sides of the input. Default: None, in which case it will be calculated as ``padding = (kernel_size - 1) // 2 * dilation``
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolution layer. If ``None`` this layer wont be used. Default: ``torch.nn.BatchNorm2d``
norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolution layer. If ``None`` this layer won't be used. Default: ``torch.nn.BatchNorm2d``
activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer wont be used. Default: ``torch.nn.ReLU``
activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer won't be used. Default: ``torch.nn.ReLU``
dilation (int): Spacing between kernel elements. Default: 1
dilation (int): Spacing between kernel elements. Default: 1
inplace (bool): Parameter for the activation layer, which can optionally do the operation in-place. Default ``True``
inplace (bool): Parameter for the activation layer, which can optionally do the operation in-place. Default ``True``
bias (bool, optional): Whether to use bias in the convolution layer. By default, biases are included if ``norm_layer is None``.
bias (bool, optional): Whether to use bias in the convolution layer. By default, biases are included if ``norm_layer is None``.
...
@@ -181,10 +181,10 @@ class Conv3dNormActivation(ConvNormActivation):
...
@@ -181,10 +181,10 @@ class Conv3dNormActivation(ConvNormActivation):
out_channels (int): Number of channels produced by the Convolution-Normalization-Activation block
out_channels (int): Number of channels produced by the Convolution-Normalization-Activation block
kernel_size: (int, optional): Size of the convolving kernel. Default: 3
kernel_size: (int, optional): Size of the convolving kernel. Default: 3
stride (int, optional): Stride of the convolution. Default: 1
stride (int, optional): Stride of the convolution. Default: 1
padding (int, tuple or str, optional): Padding added to all four sides of the input. Default: None, in which case it will calculated as ``padding = (kernel_size - 1) // 2 * dilation``
padding (int, tuple or str, optional): Padding added to all four sides of the input. Default: None, in which case it will be calculated as ``padding = (kernel_size - 1) // 2 * dilation``
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolution layer. If ``None`` this layer wont be used. Default: ``torch.nn.BatchNorm3d``
norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolution layer. If ``None`` this layer won't be used. Default: ``torch.nn.BatchNorm3d``
activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer wont be used. Default: ``torch.nn.ReLU``
activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer won't be used. Default: ``torch.nn.ReLU``
dilation (int): Spacing between kernel elements. Default: 1
dilation (int): Spacing between kernel elements. Default: 1
inplace (bool): Parameter for the activation layer, which can optionally do the operation in-place. Default ``True``
inplace (bool): Parameter for the activation layer, which can optionally do the operation in-place. Default ``True``
bias (bool, optional): Whether to use bias in the convolution layer. By default, biases are included if ``norm_layer is None``.
bias (bool, optional): Whether to use bias in the convolution layer. By default, biases are included if ``norm_layer is None``.
...
@@ -266,9 +266,10 @@ class MLP(torch.nn.Sequential):
...
@@ -266,9 +266,10 @@ class MLP(torch.nn.Sequential):
Args:
Args:
in_channels (int): Number of channels of the input
in_channels (int): Number of channels of the input
hidden_channels (List[int]): List of the hidden channel dimensions
hidden_channels (List[int]): List of the hidden channel dimensions
norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolution layer. If ``None`` this layer wont be used. Default: ``None``
norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the linear layer. If ``None`` this layer won't be used. Default: ``None``
activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer wont be used. Default: ``torch.nn.ReLU``
activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the linear layer. If ``None`` this layer won't be used. Default: ``torch.nn.ReLU``
inplace (bool): Parameter for the activation layer, which can optionally do the operation in-place. Default ``True``
inplace (bool, optional): Parameter for the activation layer, which can optionally do the operation in-place.
Default is ``None``, which uses the respective default values of the ``activation_layer`` and Dropout layer.
bias (bool): Whether to use bias in the linear layer. Default ``True``
bias (bool): Whether to use bias in the linear layer. Default ``True``
dropout (float): The probability for the dropout layer. Default: 0.0
dropout (float): The probability for the dropout layer. Default: 0.0
"""
"""
...
@@ -279,7 +280,7 @@ class MLP(torch.nn.Sequential):
...
@@ -279,7 +280,7 @@ class MLP(torch.nn.Sequential):