Unverified Commit c7e29470 authored by Nicolas Hug's avatar Nicolas Hug Committed by GitHub
Browse files

Fix Kinetics dataset docstring (#8121)

parent 4433680a
...@@ -42,12 +42,12 @@ class Kinetics(VisionDataset): ...@@ -42,12 +42,12 @@ class Kinetics(VisionDataset):
root/ root/
├── split ├── split
│ ├── class1 │ ├── class1
│ │ ├── clip1.mp4 │ │ ├── vid1.mp4
│ │ ├── clip2.mp4 │ │ ├── vid2.mp4
│ │ ├── clip3.mp4 │ │ ├── vid3.mp4
│ │ ├── ... │ │ ├── ...
│ ├── class2 │ ├── class2
│ │ ├── clipx.mp4 │ │ ├── vidx.mp4
│ │ └── ... │ │ └── ...
Note: split is appended automatically using the split argument. Note: split is appended automatically using the split argument.
......
...@@ -135,8 +135,8 @@ class VideoClips: ...@@ -135,8 +135,8 @@ class VideoClips:
self.compute_clips(clip_length_in_frames, frames_between_clips, frame_rate) self.compute_clips(clip_length_in_frames, frames_between_clips, frame_rate)
def _compute_frame_pts(self) -> None: def _compute_frame_pts(self) -> None:
self.video_pts = [] self.video_pts = [] # len = num_videos. Each entry is a tensor of shape (num_frames_in_video,)
self.video_fps: List[int] = [] self.video_fps: List[int] = [] # len = num_videos
# strategy: use a DataLoader to parallelize read_video_timestamps # strategy: use a DataLoader to parallelize read_video_timestamps
# so need to create a dummy dataset first # so need to create a dummy dataset first
...@@ -152,13 +152,13 @@ class VideoClips: ...@@ -152,13 +152,13 @@ class VideoClips:
with tqdm(total=len(dl)) as pbar: with tqdm(total=len(dl)) as pbar:
for batch in dl: for batch in dl:
pbar.update(1) pbar.update(1)
clips, fps = list(zip(*batch)) batch_pts, batch_fps = list(zip(*batch))
# we need to specify dtype=torch.long because for empty list, # we need to specify dtype=torch.long because for empty list,
# torch.as_tensor will use torch.float as default dtype. This # torch.as_tensor will use torch.float as default dtype. This
# happens when decoding fails and no pts is returned in the list. # happens when decoding fails and no pts is returned in the list.
clips = [torch.as_tensor(c, dtype=torch.long) for c in clips] batch_pts = [torch.as_tensor(pts, dtype=torch.long) for pts in batch_pts]
self.video_pts.extend(clips) self.video_pts.extend(batch_pts)
self.video_fps.extend(fps) self.video_fps.extend(batch_fps)
def _init_from_metadata(self, metadata: Dict[str, Any]) -> None: def _init_from_metadata(self, metadata: Dict[str, Any]) -> None:
self.video_paths = metadata["video_paths"] self.video_paths = metadata["video_paths"]
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment