Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
vision
Commits
b18a4757
Unverified
Commit
b18a4757
authored
Nov 18, 2020
by
Zhiqiang Wang
Committed by
GitHub
Nov 18, 2020
Browse files
Adds Anchor tests with ground-truth outputs (#2983)
* Add AnchorGenerator with ground-truth outputs * Minor fixes
parent
4c112189
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
40 additions
and
0 deletions
+40
-0
test/test_models_detection_anchor_utils.py
test/test_models_detection_anchor_utils.py
+40
-0
No files found.
test/test_models_detection_anchor_utils.py
View file @
b18a4757
from
collections
import
OrderedDict
import
torch
import
unittest
from
torchvision.models.detection.anchor_utils
import
AnchorGenerator
...
...
@@ -13,3 +14,42 @@ class Tester(unittest.TestCase):
image_list
=
ImageList
(
image1
,
[(
800
,
800
)])
feature_maps
=
[
torch
.
randn
(
1
,
50
)]
self
.
assertRaises
(
ValueError
,
anc
,
image_list
,
feature_maps
)
def
_init_test_anchor_generator
(
self
):
anchor_sizes
=
tuple
((
x
,)
for
x
in
[
32
,
64
,
128
])
aspect_ratios
=
((
0.5
,
1.0
,
2.0
),)
*
len
(
anchor_sizes
)
anchor_generator
=
AnchorGenerator
(
anchor_sizes
,
aspect_ratios
)
return
anchor_generator
def
get_features
(
self
,
images
):
s0
,
s1
=
images
.
shape
[
-
2
:]
features
=
[
(
'0'
,
torch
.
rand
(
2
,
8
,
s0
//
4
,
s1
//
4
)),
(
'1'
,
torch
.
rand
(
2
,
16
,
s0
//
8
,
s1
//
8
)),
(
'2'
,
torch
.
rand
(
2
,
32
,
s0
//
16
,
s1
//
16
)),
]
features
=
OrderedDict
(
features
)
return
features
def
test_anchor_generator
(
self
):
images
=
torch
.
randn
(
2
,
3
,
16
,
32
)
features
=
self
.
get_features
(
images
)
features
=
list
(
features
.
values
())
image_shapes
=
[
i
.
shape
[
-
2
:]
for
i
in
images
]
images
=
ImageList
(
images
,
image_shapes
)
model
=
self
.
_init_test_anchor_generator
()
model
.
eval
()
anchors
=
model
(
images
,
features
)
# Compute target anchors numbers
grid_sizes
=
[
f
.
shape
[
-
2
:]
for
f
in
features
]
num_anchors_estimated
=
0
for
sizes
,
num_anchors_per_loc
in
zip
(
grid_sizes
,
model
.
num_anchors_per_location
()):
num_anchors_estimated
+=
sizes
[
0
]
*
sizes
[
1
]
*
num_anchors_per_loc
self
.
assertEqual
(
num_anchors_estimated
,
126
)
self
.
assertEqual
(
len
(
anchors
),
2
)
self
.
assertEqual
(
tuple
(
anchors
[
0
].
shape
),
(
num_anchors_estimated
,
4
))
self
.
assertEqual
(
tuple
(
anchors
[
1
].
shape
),
(
num_anchors_estimated
,
4
))
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment