Unverified Commit b16dec19 authored by vfdev's avatar vfdev Committed by GitHub
Browse files

[proto] Performance improvements for equalize op (#6757)

* [proto] Performance improvements for equalize op

* Added tests
parent 54a2d4e8
......@@ -1037,3 +1037,14 @@ def test_to_image_pil(inpt, mode):
assert isinstance(output, PIL.Image.Image)
assert np.asarray(inpt).sum() == np.asarray(output).sum()
def test_equalize_image_tensor_edge_cases():
inpt = torch.zeros(3, 200, 200, dtype=torch.uint8)
output = F.equalize_image_tensor(inpt)
torch.testing.assert_close(inpt, output)
inpt = torch.zeros(5, 3, 200, 200, dtype=torch.uint8)
inpt[..., 100:, 100:] = 1
output = F.equalize_image_tensor(inpt)
assert output.unique().tolist() == [0, 255]
......@@ -183,28 +183,37 @@ def autocontrast(inpt: features.InputTypeJIT) -> features.InputTypeJIT:
return autocontrast_image_pil(inpt)
def _scale_channel(img_chan: torch.Tensor) -> torch.Tensor:
# TODO: we should expect bincount to always be faster than histc, but this
# isn't always the case. Once
# https://github.com/pytorch/pytorch/issues/53194 is fixed, remove the if
# block and only use bincount.
if img_chan.is_cuda:
hist = torch.histc(img_chan.to(torch.float32), bins=256, min=0, max=255)
else:
hist = torch.bincount(img_chan.view(-1), minlength=256)
nonzero_hist = hist[hist != 0]
step = torch.div(nonzero_hist[:-1].sum(), 255, rounding_mode="floor")
if step == 0:
return img_chan
lut = torch.div(torch.cumsum(hist, 0) + torch.div(step, 2, rounding_mode="floor"), step, rounding_mode="floor")
# Doing inplace clamp and converting lut to uint8 improves perfs
lut.clamp_(0, 255)
lut = lut.to(torch.uint8)
lut = torch.nn.functional.pad(lut[:-1], [1, 0])
return lut[img_chan.to(torch.int64)]
def _equalize_image_tensor_vec(img: torch.Tensor) -> torch.Tensor:
# input img shape should be [N, H, W]
shape = img.shape
# Compute image histogram:
flat_img = img.flatten(start_dim=1).to(torch.long) # -> [N, H * W]
hist = flat_img.new_zeros(shape[0], 256)
hist.scatter_add_(dim=1, index=flat_img, src=flat_img.new_ones(1).expand_as(flat_img))
# Compute image cdf
chist = hist.cumsum_(dim=1)
# Compute steps, where step per channel is nonzero_hist[:-1].sum() // 255
# Trick: nonzero_hist[:-1].sum() == chist[idx - 1], where idx = chist.argmax()
idx = chist.argmax(dim=1).sub_(1)
# If histogram is degenerate (hist of zero image), index is -1
neg_idx_mask = idx < 0
idx.clamp_(min=0)
step = chist.gather(dim=1, index=idx.unsqueeze(1))
step[neg_idx_mask] = 0
step.div_(255, rounding_mode="floor")
# Compute batched Look-up-table:
# Necessary to avoid an integer division by zero, which raises
clamped_step = step.clamp(min=1)
chist.add_(torch.div(step, 2, rounding_mode="floor")).div_(clamped_step, rounding_mode="floor").clamp_(0, 255)
lut = chist.to(torch.uint8) # [N, 256]
# Pad lut with zeros
zeros = lut.new_zeros((1, 1)).expand(shape[0], 1)
lut = torch.cat([zeros, lut[:, :-1]], dim=1)
return torch.where((step == 0).unsqueeze(-1), img, lut.gather(dim=1, index=flat_img).view_as(img))
def equalize_image_tensor(image: torch.Tensor) -> torch.Tensor:
......@@ -217,10 +226,8 @@ def equalize_image_tensor(image: torch.Tensor) -> torch.Tensor:
if image.numel() == 0:
return image
elif image.ndim == 2:
return _scale_channel(image)
else:
return torch.stack([_scale_channel(x) for x in image.view(-1, height, width)]).view(image.shape)
return _equalize_image_tensor_vec(image.view(-1, height, width)).view(image.shape)
equalize_image_pil = _FP.equalize
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment