Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
vision
Commits
ae87c1e4
"vscode:/vscode.git/clone" did not exist on "f512021e77beb9b780c818b30daba58f1329ac11"
Unverified
Commit
ae87c1e4
authored
Jan 14, 2021
by
Vasilis Vryniotis
Committed by
GitHub
Jan 14, 2021
Browse files
Update to clang-format 11. (#3254)
parent
7bf6e7b1
Changes
6
Show whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
233 additions
and
195 deletions
+233
-195
torchvision/csrc/ops/autograd/ps_roi_align_kernel.cpp
torchvision/csrc/ops/autograd/ps_roi_align_kernel.cpp
+7
-6
torchvision/csrc/ops/autograd/ps_roi_pool_kernel.cpp
torchvision/csrc/ops/autograd/ps_roi_pool_kernel.cpp
+6
-5
torchvision/csrc/ops/autograd/roi_align_kernel.cpp
torchvision/csrc/ops/autograd/roi_align_kernel.cpp
+8
-7
torchvision/csrc/ops/autograd/roi_pool_kernel.cpp
torchvision/csrc/ops/autograd/roi_pool_kernel.cpp
+6
-5
torchvision/csrc/ops/cpu/deform_conv2d_kernel.cpp
torchvision/csrc/ops/cpu/deform_conv2d_kernel.cpp
+103
-86
torchvision/csrc/ops/cuda/deform_conv2d_kernel.cu
torchvision/csrc/ops/cuda/deform_conv2d_kernel.cu
+103
-86
No files found.
torchvision/csrc/ops/autograd/ps_roi_align_kernel.cpp
View file @
ae87c1e4
...
...
@@ -62,7 +62,8 @@ class PSROIAlignFunction
input_shape
[
2
],
input_shape
[
3
]);
return
{
grad_in
,
return
{
grad_in
,
torch
::
autograd
::
Variable
(),
torch
::
autograd
::
Variable
(),
torch
::
autograd
::
Variable
(),
...
...
torchvision/csrc/ops/autograd/ps_roi_pool_kernel.cpp
View file @
ae87c1e4
...
...
@@ -53,7 +53,8 @@ class PSROIPoolFunction : public torch::autograd::Function<PSROIPoolFunction> {
input_shape
[
2
],
input_shape
[
3
]);
return
{
grad_in
,
return
{
grad_in
,
torch
::
autograd
::
Variable
(),
torch
::
autograd
::
Variable
(),
torch
::
autograd
::
Variable
(),
...
...
torchvision/csrc/ops/autograd/roi_align_kernel.cpp
View file @
ae87c1e4
...
...
@@ -57,7 +57,8 @@ class ROIAlignFunction : public torch::autograd::Function<ROIAlignFunction> {
input_shape
[
3
],
ctx
->
saved_data
[
"sampling_ratio"
].
toInt
(),
ctx
->
saved_data
[
"aligned"
].
toBool
());
return
{
grad_in
,
return
{
grad_in
,
torch
::
autograd
::
Variable
(),
torch
::
autograd
::
Variable
(),
torch
::
autograd
::
Variable
(),
...
...
torchvision/csrc/ops/autograd/roi_pool_kernel.cpp
View file @
ae87c1e4
...
...
@@ -53,7 +53,8 @@ class ROIPoolFunction : public torch::autograd::Function<ROIPoolFunction> {
input_shape
[
2
],
input_shape
[
3
]);
return
{
grad_in
,
return
{
grad_in
,
torch
::
autograd
::
Variable
(),
torch
::
autograd
::
Variable
(),
torch
::
autograd
::
Variable
(),
...
...
torchvision/csrc/ops/cpu/deform_conv2d_kernel.cpp
View file @
ae87c1e4
...
...
@@ -634,24 +634,28 @@ std::tuple<at::Tensor, at::Tensor, at::Tensor> backward_gradient_inputs(
input
=
input
.
reshape
(
{
batch_sz
/
n_parallel_imgs
,
n_parallel_imgs
,
n_in_channels
,
in_h
,
in_w
});
grad_offset
=
grad_offset
.
reshape
({
batch_sz
/
n_parallel_imgs
,
grad_offset
=
grad_offset
.
reshape
(
{
batch_sz
/
n_parallel_imgs
,
n_parallel_imgs
,
n_offset_grps
*
2
*
weight_h
*
weight_w
,
out_h
,
out_w
});
offset
=
offset
.
reshape
({
batch_sz
/
n_parallel_imgs
,
offset
=
offset
.
reshape
(
{
batch_sz
/
n_parallel_imgs
,
n_parallel_imgs
,
n_offset_grps
*
2
*
weight_h
*
weight_w
,
out_h
,
out_w
});
if
(
use_mask
)
{
grad_mask
=
grad_mask
.
reshape
({
batch_sz
/
n_parallel_imgs
,
grad_mask
=
grad_mask
.
reshape
(
{
batch_sz
/
n_parallel_imgs
,
n_parallel_imgs
,
n_offset_grps
*
weight_h
*
weight_w
,
out_h
,
out_w
});
mask
=
mask
.
reshape
({
batch_sz
/
n_parallel_imgs
,
mask
=
mask
.
reshape
(
{
batch_sz
/
n_parallel_imgs
,
n_parallel_imgs
,
n_offset_grps
*
weight_h
*
weight_w
,
out_h
,
...
...
@@ -659,7 +663,8 @@ std::tuple<at::Tensor, at::Tensor, at::Tensor> backward_gradient_inputs(
}
grad_out
=
grad_out
.
reshape
({
batch_sz
/
n_parallel_imgs
,
.
reshape
(
{
batch_sz
/
n_parallel_imgs
,
n_parallel_imgs
,
n_weight_grps
,
n_out_channels
/
n_weight_grps
,
...
...
@@ -667,7 +672,8 @@ std::tuple<at::Tensor, at::Tensor, at::Tensor> backward_gradient_inputs(
out_w
})
.
permute
({
0
,
2
,
3
,
1
,
4
,
5
});
weight
=
weight
.
reshape
({
n_weight_grps
,
weight
=
weight
.
reshape
(
{
n_weight_grps
,
weight
.
size
(
0
)
/
n_weight_grps
,
weight
.
size
(
1
),
weight
.
size
(
2
),
...
...
@@ -775,7 +781,8 @@ at::Tensor backward_gradient_parameters(
}
at
::
Tensor
grad_out_buf
=
grad_out
.
reshape
({
batch_sz
/
n_parallel_imgs
,
.
reshape
(
{
batch_sz
/
n_parallel_imgs
,
n_parallel_imgs
,
n_weight_grps
,
n_out_channels
/
n_weight_grps
,
...
...
@@ -787,21 +794,24 @@ at::Tensor backward_gradient_parameters(
input
=
input
.
reshape
(
{
batch_sz
/
n_parallel_imgs
,
n_parallel_imgs
,
n_in_channels
,
in_h
,
in_w
});
offset
=
offset
.
reshape
({
batch_sz
/
n_parallel_imgs
,
offset
=
offset
.
reshape
(
{
batch_sz
/
n_parallel_imgs
,
n_parallel_imgs
,
n_offset_grps
*
2
*
weight_h
*
weight_w
,
out_h
,
out_w
});
if
(
use_mask
)
{
mask
=
mask
.
reshape
({
batch_sz
/
n_parallel_imgs
,
mask
=
mask
.
reshape
(
{
batch_sz
/
n_parallel_imgs
,
n_parallel_imgs
,
n_offset_grps
*
weight_h
*
weight_w
,
out_h
,
out_w
});
}
grad_weight
=
grad_weight
.
view
({
n_weight_grps
,
grad_weight
=
grad_weight
.
view
(
{
n_weight_grps
,
grad_weight
.
size
(
0
)
/
n_weight_grps
,
grad_weight
.
size
(
1
),
grad_weight
.
size
(
2
),
...
...
@@ -846,7 +856,8 @@ at::Tensor backward_gradient_parameters(
}
}
grad_weight
=
grad_weight
.
view
({
grad_weight
.
size
(
0
)
*
grad_weight
.
size
(
1
),
grad_weight
=
grad_weight
.
view
(
{
grad_weight
.
size
(
0
)
*
grad_weight
.
size
(
1
),
grad_weight
.
size
(
2
),
grad_weight
.
size
(
3
),
grad_weight
.
size
(
4
)});
...
...
@@ -976,7 +987,8 @@ at::Tensor deform_conv2d_forward_kernel(
}
// Separate batches into blocks
out
=
out
.
view
({
batch_sz
/
n_parallel_imgs
,
out
=
out
.
view
(
{
batch_sz
/
n_parallel_imgs
,
n_parallel_imgs
,
out_channels
,
out_h
,
...
...
@@ -984,14 +996,16 @@ at::Tensor deform_conv2d_forward_kernel(
input_c
=
input_c
.
view
(
{
batch_sz
/
n_parallel_imgs
,
n_parallel_imgs
,
n_in_channels
,
in_h
,
in_w
});
offset_c
=
offset_c
.
view
({
batch_sz
/
n_parallel_imgs
,
offset_c
=
offset_c
.
view
(
{
batch_sz
/
n_parallel_imgs
,
n_parallel_imgs
,
n_offset_grps
*
2
*
weight_h
*
weight_w
,
out_h
,
out_w
});
if
(
use_mask
)
{
mask_c
=
mask_c
.
view
({
batch_sz
/
n_parallel_imgs
,
mask_c
=
mask_c
.
view
(
{
batch_sz
/
n_parallel_imgs
,
n_parallel_imgs
,
n_offset_grps
*
weight_h
*
weight_w
,
out_h
,
...
...
@@ -1006,12 +1020,14 @@ at::Tensor deform_conv2d_forward_kernel(
out
.
options
());
// Separate channels into convolution groups
out_buf
=
out_buf
.
view
({
out_buf
.
size
(
0
),
out_buf
=
out_buf
.
view
(
{
out_buf
.
size
(
0
),
n_weight_grps
,
out_buf
.
size
(
1
)
/
n_weight_grps
,
out_buf
.
size
(
2
),
out_buf
.
size
(
3
)});
weight_c
=
weight_c
.
view
({
n_weight_grps
,
weight_c
=
weight_c
.
view
(
{
n_weight_grps
,
weight_c
.
size
(
0
)
/
n_weight_grps
,
weight_c
.
size
(
1
),
weight_c
.
size
(
2
),
...
...
@@ -1056,7 +1072,8 @@ at::Tensor deform_conv2d_forward_kernel(
columns
.
view
({
columns
.
size
(
0
)
*
columns
.
size
(
1
),
columns
.
size
(
2
)});
}
out_buf
=
out_buf
.
view
({
batch_sz
/
n_parallel_imgs
,
out_buf
=
out_buf
.
view
(
{
batch_sz
/
n_parallel_imgs
,
out_channels
,
n_parallel_imgs
,
out_h
,
...
...
torchvision/csrc/ops/cuda/deform_conv2d_kernel.cu
View file @
ae87c1e4
...
...
@@ -677,24 +677,28 @@ std::tuple<at::Tensor, at::Tensor, at::Tensor> backward_gradient_inputs(
input
=
input
.
reshape
(
{
batch_sz
/
n_parallel_imgs
,
n_parallel_imgs
,
n_in_channels
,
in_h
,
in_w
});
grad_offset
=
grad_offset
.
reshape
({
batch_sz
/
n_parallel_imgs
,
grad_offset
=
grad_offset
.
reshape
(
{
batch_sz
/
n_parallel_imgs
,
n_parallel_imgs
,
n_offset_grps
*
2
*
weight_h
*
weight_w
,
out_h
,
out_w
});
offset
=
offset
.
reshape
({
batch_sz
/
n_parallel_imgs
,
offset
=
offset
.
reshape
(
{
batch_sz
/
n_parallel_imgs
,
n_parallel_imgs
,
n_offset_grps
*
2
*
weight_h
*
weight_w
,
out_h
,
out_w
});
if
(
use_mask
)
{
grad_mask
=
grad_mask
.
reshape
({
batch_sz
/
n_parallel_imgs
,
grad_mask
=
grad_mask
.
reshape
(
{
batch_sz
/
n_parallel_imgs
,
n_parallel_imgs
,
n_offset_grps
*
weight_h
*
weight_w
,
out_h
,
out_w
});
mask
=
mask
.
reshape
({
batch_sz
/
n_parallel_imgs
,
mask
=
mask
.
reshape
(
{
batch_sz
/
n_parallel_imgs
,
n_parallel_imgs
,
n_offset_grps
*
weight_h
*
weight_w
,
out_h
,
...
...
@@ -702,7 +706,8 @@ std::tuple<at::Tensor, at::Tensor, at::Tensor> backward_gradient_inputs(
}
grad_out
=
grad_out
.
reshape
({
batch_sz
/
n_parallel_imgs
,
.
reshape
(
{
batch_sz
/
n_parallel_imgs
,
n_parallel_imgs
,
n_weight_grps
,
n_out_channels
/
n_weight_grps
,
...
...
@@ -710,7 +715,8 @@ std::tuple<at::Tensor, at::Tensor, at::Tensor> backward_gradient_inputs(
out_w
})
.
permute
({
0
,
2
,
3
,
1
,
4
,
5
});
weight
=
weight
.
reshape
({
n_weight_grps
,
weight
=
weight
.
reshape
(
{
n_weight_grps
,
weight
.
size
(
0
)
/
n_weight_grps
,
weight
.
size
(
1
),
weight
.
size
(
2
),
...
...
@@ -819,7 +825,8 @@ at::Tensor backward_gradient_parameters(
}
at
::
Tensor
grad_out_buf
=
grad_out
.
reshape
({
batch_sz
/
n_parallel_imgs
,
.
reshape
(
{
batch_sz
/
n_parallel_imgs
,
n_parallel_imgs
,
n_weight_grps
,
n_out_channels
/
n_weight_grps
,
...
...
@@ -831,21 +838,24 @@ at::Tensor backward_gradient_parameters(
input
=
input
.
reshape
(
{
batch_sz
/
n_parallel_imgs
,
n_parallel_imgs
,
n_in_channels
,
in_h
,
in_w
});
offset
=
offset
.
reshape
({
batch_sz
/
n_parallel_imgs
,
offset
=
offset
.
reshape
(
{
batch_sz
/
n_parallel_imgs
,
n_parallel_imgs
,
n_offset_grps
*
2
*
weight_h
*
weight_w
,
out_h
,
out_w
});
if
(
use_mask
)
{
mask
=
mask
.
reshape
({
batch_sz
/
n_parallel_imgs
,
mask
=
mask
.
reshape
(
{
batch_sz
/
n_parallel_imgs
,
n_parallel_imgs
,
n_offset_grps
*
weight_h
*
weight_w
,
out_h
,
out_w
});
}
grad_weight
=
grad_weight
.
reshape
({
n_weight_grps
,
grad_weight
=
grad_weight
.
reshape
(
{
n_weight_grps
,
grad_weight
.
size
(
0
)
/
n_weight_grps
,
grad_weight
.
size
(
1
),
grad_weight
.
size
(
2
),
...
...
@@ -890,7 +900,8 @@ at::Tensor backward_gradient_parameters(
}
}
grad_weight
=
grad_weight
.
view
({
grad_weight
.
size
(
0
)
*
grad_weight
.
size
(
1
),
grad_weight
=
grad_weight
.
view
(
{
grad_weight
.
size
(
0
)
*
grad_weight
.
size
(
1
),
grad_weight
.
size
(
2
),
grad_weight
.
size
(
3
),
grad_weight
.
size
(
4
)});
...
...
@@ -1021,7 +1032,8 @@ at::Tensor deform_conv2d_forward_kernel(
}
// Separate batches into blocks
out
=
out
.
view
({
batch_sz
/
n_parallel_imgs
,
out
=
out
.
view
(
{
batch_sz
/
n_parallel_imgs
,
n_parallel_imgs
,
out_channels
,
out_h
,
...
...
@@ -1029,14 +1041,16 @@ at::Tensor deform_conv2d_forward_kernel(
input_c
=
input_c
.
view
(
{
batch_sz
/
n_parallel_imgs
,
n_parallel_imgs
,
in_channels
,
in_h
,
in_w
});
offset_c
=
offset_c
.
view
({
batch_sz
/
n_parallel_imgs
,
offset_c
=
offset_c
.
view
(
{
batch_sz
/
n_parallel_imgs
,
n_parallel_imgs
,
n_offset_grps
*
2
*
weight_h
*
weight_w
,
out_h
,
out_w
});
if
(
use_mask
)
{
mask_c
=
mask_c
.
view
({
batch_sz
/
n_parallel_imgs
,
mask_c
=
mask_c
.
view
(
{
batch_sz
/
n_parallel_imgs
,
n_parallel_imgs
,
n_offset_grps
*
weight_h
*
weight_w
,
out_h
,
...
...
@@ -1051,12 +1065,14 @@ at::Tensor deform_conv2d_forward_kernel(
out
.
options
());
// Separate channels into convolution groups
out_buf
=
out_buf
.
view
({
out_buf
.
size
(
0
),
out_buf
=
out_buf
.
view
(
{
out_buf
.
size
(
0
),
n_weight_grps
,
out_buf
.
size
(
1
)
/
n_weight_grps
,
out_buf
.
size
(
2
),
out_buf
.
size
(
3
)});
weight_c
=
weight_c
.
view
({
n_weight_grps
,
weight_c
=
weight_c
.
view
(
{
n_weight_grps
,
weight_c
.
size
(
0
)
/
n_weight_grps
,
weight_c
.
size
(
1
),
weight_c
.
size
(
2
),
...
...
@@ -1101,7 +1117,8 @@ at::Tensor deform_conv2d_forward_kernel(
columns
.
view
({
columns
.
size
(
0
)
*
columns
.
size
(
1
),
columns
.
size
(
2
)});
}
out_buf
=
out_buf
.
view
({
batch_sz
/
n_parallel_imgs
,
out_buf
=
out_buf
.
view
(
{
batch_sz
/
n_parallel_imgs
,
out_channels
,
n_parallel_imgs
,
out_h
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment