Unverified Commit ae87c1e4 authored by Vasilis Vryniotis's avatar Vasilis Vryniotis Committed by GitHub
Browse files

Update to clang-format 11. (#3254)

parent 7bf6e7b1
......@@ -62,7 +62,8 @@ class PSROIAlignFunction
input_shape[2],
input_shape[3]);
return {grad_in,
return {
grad_in,
torch::autograd::Variable(),
torch::autograd::Variable(),
torch::autograd::Variable(),
......
......@@ -53,7 +53,8 @@ class PSROIPoolFunction : public torch::autograd::Function<PSROIPoolFunction> {
input_shape[2],
input_shape[3]);
return {grad_in,
return {
grad_in,
torch::autograd::Variable(),
torch::autograd::Variable(),
torch::autograd::Variable(),
......
......@@ -57,7 +57,8 @@ class ROIAlignFunction : public torch::autograd::Function<ROIAlignFunction> {
input_shape[3],
ctx->saved_data["sampling_ratio"].toInt(),
ctx->saved_data["aligned"].toBool());
return {grad_in,
return {
grad_in,
torch::autograd::Variable(),
torch::autograd::Variable(),
torch::autograd::Variable(),
......
......@@ -53,7 +53,8 @@ class ROIPoolFunction : public torch::autograd::Function<ROIPoolFunction> {
input_shape[2],
input_shape[3]);
return {grad_in,
return {
grad_in,
torch::autograd::Variable(),
torch::autograd::Variable(),
torch::autograd::Variable(),
......
......@@ -634,24 +634,28 @@ std::tuple<at::Tensor, at::Tensor, at::Tensor> backward_gradient_inputs(
input = input.reshape(
{batch_sz / n_parallel_imgs, n_parallel_imgs, n_in_channels, in_h, in_w});
grad_offset = grad_offset.reshape({batch_sz / n_parallel_imgs,
grad_offset = grad_offset.reshape(
{batch_sz / n_parallel_imgs,
n_parallel_imgs,
n_offset_grps * 2 * weight_h * weight_w,
out_h,
out_w});
offset = offset.reshape({batch_sz / n_parallel_imgs,
offset = offset.reshape(
{batch_sz / n_parallel_imgs,
n_parallel_imgs,
n_offset_grps * 2 * weight_h * weight_w,
out_h,
out_w});
if (use_mask) {
grad_mask = grad_mask.reshape({batch_sz / n_parallel_imgs,
grad_mask = grad_mask.reshape(
{batch_sz / n_parallel_imgs,
n_parallel_imgs,
n_offset_grps * weight_h * weight_w,
out_h,
out_w});
mask = mask.reshape({batch_sz / n_parallel_imgs,
mask = mask.reshape(
{batch_sz / n_parallel_imgs,
n_parallel_imgs,
n_offset_grps * weight_h * weight_w,
out_h,
......@@ -659,7 +663,8 @@ std::tuple<at::Tensor, at::Tensor, at::Tensor> backward_gradient_inputs(
}
grad_out = grad_out
.reshape({batch_sz / n_parallel_imgs,
.reshape(
{batch_sz / n_parallel_imgs,
n_parallel_imgs,
n_weight_grps,
n_out_channels / n_weight_grps,
......@@ -667,7 +672,8 @@ std::tuple<at::Tensor, at::Tensor, at::Tensor> backward_gradient_inputs(
out_w})
.permute({0, 2, 3, 1, 4, 5});
weight = weight.reshape({n_weight_grps,
weight = weight.reshape(
{n_weight_grps,
weight.size(0) / n_weight_grps,
weight.size(1),
weight.size(2),
......@@ -775,7 +781,8 @@ at::Tensor backward_gradient_parameters(
}
at::Tensor grad_out_buf = grad_out
.reshape({batch_sz / n_parallel_imgs,
.reshape(
{batch_sz / n_parallel_imgs,
n_parallel_imgs,
n_weight_grps,
n_out_channels / n_weight_grps,
......@@ -787,21 +794,24 @@ at::Tensor backward_gradient_parameters(
input = input.reshape(
{batch_sz / n_parallel_imgs, n_parallel_imgs, n_in_channels, in_h, in_w});
offset = offset.reshape({batch_sz / n_parallel_imgs,
offset = offset.reshape(
{batch_sz / n_parallel_imgs,
n_parallel_imgs,
n_offset_grps * 2 * weight_h * weight_w,
out_h,
out_w});
if (use_mask) {
mask = mask.reshape({batch_sz / n_parallel_imgs,
mask = mask.reshape(
{batch_sz / n_parallel_imgs,
n_parallel_imgs,
n_offset_grps * weight_h * weight_w,
out_h,
out_w});
}
grad_weight = grad_weight.view({n_weight_grps,
grad_weight = grad_weight.view(
{n_weight_grps,
grad_weight.size(0) / n_weight_grps,
grad_weight.size(1),
grad_weight.size(2),
......@@ -846,7 +856,8 @@ at::Tensor backward_gradient_parameters(
}
}
grad_weight = grad_weight.view({grad_weight.size(0) * grad_weight.size(1),
grad_weight = grad_weight.view(
{grad_weight.size(0) * grad_weight.size(1),
grad_weight.size(2),
grad_weight.size(3),
grad_weight.size(4)});
......@@ -976,7 +987,8 @@ at::Tensor deform_conv2d_forward_kernel(
}
// Separate batches into blocks
out = out.view({batch_sz / n_parallel_imgs,
out = out.view(
{batch_sz / n_parallel_imgs,
n_parallel_imgs,
out_channels,
out_h,
......@@ -984,14 +996,16 @@ at::Tensor deform_conv2d_forward_kernel(
input_c = input_c.view(
{batch_sz / n_parallel_imgs, n_parallel_imgs, n_in_channels, in_h, in_w});
offset_c = offset_c.view({batch_sz / n_parallel_imgs,
offset_c = offset_c.view(
{batch_sz / n_parallel_imgs,
n_parallel_imgs,
n_offset_grps * 2 * weight_h * weight_w,
out_h,
out_w});
if (use_mask) {
mask_c = mask_c.view({batch_sz / n_parallel_imgs,
mask_c = mask_c.view(
{batch_sz / n_parallel_imgs,
n_parallel_imgs,
n_offset_grps * weight_h * weight_w,
out_h,
......@@ -1006,12 +1020,14 @@ at::Tensor deform_conv2d_forward_kernel(
out.options());
// Separate channels into convolution groups
out_buf = out_buf.view({out_buf.size(0),
out_buf = out_buf.view(
{out_buf.size(0),
n_weight_grps,
out_buf.size(1) / n_weight_grps,
out_buf.size(2),
out_buf.size(3)});
weight_c = weight_c.view({n_weight_grps,
weight_c = weight_c.view(
{n_weight_grps,
weight_c.size(0) / n_weight_grps,
weight_c.size(1),
weight_c.size(2),
......@@ -1056,7 +1072,8 @@ at::Tensor deform_conv2d_forward_kernel(
columns.view({columns.size(0) * columns.size(1), columns.size(2)});
}
out_buf = out_buf.view({batch_sz / n_parallel_imgs,
out_buf = out_buf.view(
{batch_sz / n_parallel_imgs,
out_channels,
n_parallel_imgs,
out_h,
......
......@@ -677,24 +677,28 @@ std::tuple<at::Tensor, at::Tensor, at::Tensor> backward_gradient_inputs(
input = input.reshape(
{batch_sz / n_parallel_imgs, n_parallel_imgs, n_in_channels, in_h, in_w});
grad_offset = grad_offset.reshape({batch_sz / n_parallel_imgs,
grad_offset = grad_offset.reshape(
{batch_sz / n_parallel_imgs,
n_parallel_imgs,
n_offset_grps * 2 * weight_h * weight_w,
out_h,
out_w});
offset = offset.reshape({batch_sz / n_parallel_imgs,
offset = offset.reshape(
{batch_sz / n_parallel_imgs,
n_parallel_imgs,
n_offset_grps * 2 * weight_h * weight_w,
out_h,
out_w});
if (use_mask) {
grad_mask = grad_mask.reshape({batch_sz / n_parallel_imgs,
grad_mask = grad_mask.reshape(
{batch_sz / n_parallel_imgs,
n_parallel_imgs,
n_offset_grps * weight_h * weight_w,
out_h,
out_w});
mask = mask.reshape({batch_sz / n_parallel_imgs,
mask = mask.reshape(
{batch_sz / n_parallel_imgs,
n_parallel_imgs,
n_offset_grps * weight_h * weight_w,
out_h,
......@@ -702,7 +706,8 @@ std::tuple<at::Tensor, at::Tensor, at::Tensor> backward_gradient_inputs(
}
grad_out = grad_out
.reshape({batch_sz / n_parallel_imgs,
.reshape(
{batch_sz / n_parallel_imgs,
n_parallel_imgs,
n_weight_grps,
n_out_channels / n_weight_grps,
......@@ -710,7 +715,8 @@ std::tuple<at::Tensor, at::Tensor, at::Tensor> backward_gradient_inputs(
out_w})
.permute({0, 2, 3, 1, 4, 5});
weight = weight.reshape({n_weight_grps,
weight = weight.reshape(
{n_weight_grps,
weight.size(0) / n_weight_grps,
weight.size(1),
weight.size(2),
......@@ -819,7 +825,8 @@ at::Tensor backward_gradient_parameters(
}
at::Tensor grad_out_buf = grad_out
.reshape({batch_sz / n_parallel_imgs,
.reshape(
{batch_sz / n_parallel_imgs,
n_parallel_imgs,
n_weight_grps,
n_out_channels / n_weight_grps,
......@@ -831,21 +838,24 @@ at::Tensor backward_gradient_parameters(
input = input.reshape(
{batch_sz / n_parallel_imgs, n_parallel_imgs, n_in_channels, in_h, in_w});
offset = offset.reshape({batch_sz / n_parallel_imgs,
offset = offset.reshape(
{batch_sz / n_parallel_imgs,
n_parallel_imgs,
n_offset_grps * 2 * weight_h * weight_w,
out_h,
out_w});
if (use_mask) {
mask = mask.reshape({batch_sz / n_parallel_imgs,
mask = mask.reshape(
{batch_sz / n_parallel_imgs,
n_parallel_imgs,
n_offset_grps * weight_h * weight_w,
out_h,
out_w});
}
grad_weight = grad_weight.reshape({n_weight_grps,
grad_weight = grad_weight.reshape(
{n_weight_grps,
grad_weight.size(0) / n_weight_grps,
grad_weight.size(1),
grad_weight.size(2),
......@@ -890,7 +900,8 @@ at::Tensor backward_gradient_parameters(
}
}
grad_weight = grad_weight.view({grad_weight.size(0) * grad_weight.size(1),
grad_weight = grad_weight.view(
{grad_weight.size(0) * grad_weight.size(1),
grad_weight.size(2),
grad_weight.size(3),
grad_weight.size(4)});
......@@ -1021,7 +1032,8 @@ at::Tensor deform_conv2d_forward_kernel(
}
// Separate batches into blocks
out = out.view({batch_sz / n_parallel_imgs,
out = out.view(
{batch_sz / n_parallel_imgs,
n_parallel_imgs,
out_channels,
out_h,
......@@ -1029,14 +1041,16 @@ at::Tensor deform_conv2d_forward_kernel(
input_c = input_c.view(
{batch_sz / n_parallel_imgs, n_parallel_imgs, in_channels, in_h, in_w});
offset_c = offset_c.view({batch_sz / n_parallel_imgs,
offset_c = offset_c.view(
{batch_sz / n_parallel_imgs,
n_parallel_imgs,
n_offset_grps * 2 * weight_h * weight_w,
out_h,
out_w});
if (use_mask) {
mask_c = mask_c.view({batch_sz / n_parallel_imgs,
mask_c = mask_c.view(
{batch_sz / n_parallel_imgs,
n_parallel_imgs,
n_offset_grps * weight_h * weight_w,
out_h,
......@@ -1051,12 +1065,14 @@ at::Tensor deform_conv2d_forward_kernel(
out.options());
// Separate channels into convolution groups
out_buf = out_buf.view({out_buf.size(0),
out_buf = out_buf.view(
{out_buf.size(0),
n_weight_grps,
out_buf.size(1) / n_weight_grps,
out_buf.size(2),
out_buf.size(3)});
weight_c = weight_c.view({n_weight_grps,
weight_c = weight_c.view(
{n_weight_grps,
weight_c.size(0) / n_weight_grps,
weight_c.size(1),
weight_c.size(2),
......@@ -1101,7 +1117,8 @@ at::Tensor deform_conv2d_forward_kernel(
columns.view({columns.size(0) * columns.size(1), columns.size(2)});
}
out_buf = out_buf.view({batch_sz / n_parallel_imgs,
out_buf = out_buf.view(
{batch_sz / n_parallel_imgs,
out_channels,
n_parallel_imgs,
out_h,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment