Unverified Commit ad2eceab authored by Philip Meier's avatar Philip Meier Committed by GitHub
Browse files

Cleanup prototype datasets CI and related things (#6944)

* remove prototype datasets from CI

* move encoded features to prototype datasets namespace

* remove decoding transforms

* [REVERT ME] reinstate prototype datasets CI

* Revert "[REVERT ME] reinstate prototype datasets CI"

This reverts commit 215fb185cf6be5be7adf0388116c77acc9a5d3f3.
parent 65769ab7
from . import _internal # usort: skip from . import _internal # usort: skip
from ._dataset import Dataset from ._dataset import Dataset
from ._encoded import EncodedData, EncodedImage
from ._resource import GDriveResource, HttpResource, KaggleDownloadResource, ManualDownloadResource, OnlineResource from ._resource import GDriveResource, HttpResource, KaggleDownloadResource, ManualDownloadResource, OnlineResource
...@@ -6,9 +6,9 @@ from typing import Any, BinaryIO, Optional, Tuple, Type, TypeVar, Union ...@@ -6,9 +6,9 @@ from typing import Any, BinaryIO, Optional, Tuple, Type, TypeVar, Union
import PIL.Image import PIL.Image
import torch import torch
from torchvision.prototype.utils._internal import fromfile, ReadOnlyTensorBuffer
from ._feature import _Feature from torchvision.prototype.features._feature import _Feature
from torchvision.prototype.utils._internal import fromfile, ReadOnlyTensorBuffer
D = TypeVar("D", bound="EncodedData") D = TypeVar("D", bound="EncodedData")
......
from ._bounding_box import BoundingBox, BoundingBoxFormat from ._bounding_box import BoundingBox, BoundingBoxFormat
from ._encoded import EncodedData, EncodedImage
from ._feature import _Feature, FillType, FillTypeJIT, InputType, InputTypeJIT, is_simple_tensor from ._feature import _Feature, FillType, FillTypeJIT, InputType, InputTypeJIT, is_simple_tensor
from ._image import ColorSpace, Image, ImageType, ImageTypeJIT, TensorImageType, TensorImageTypeJIT from ._image import ColorSpace, Image, ImageType, ImageTypeJIT, TensorImageType, TensorImageTypeJIT
from ._label import Label, OneHotLabel from ._label import Label, OneHotLabel
......
...@@ -52,6 +52,6 @@ from ._misc import ( ...@@ -52,6 +52,6 @@ from ._misc import (
TransposeDimensions, TransposeDimensions,
) )
from ._temporal import UniformTemporalSubsample from ._temporal import UniformTemporalSubsample
from ._type_conversion import DecodeImage, LabelToOneHot, PILToTensor, ToImagePIL, ToImageTensor, ToPILImage from ._type_conversion import LabelToOneHot, PILToTensor, ToImagePIL, ToImageTensor, ToPILImage
from ._deprecated import Grayscale, RandomGrayscale, ToTensor # usort: skip from ._deprecated import Grayscale, RandomGrayscale, ToTensor # usort: skip
...@@ -9,13 +9,6 @@ from torchvision.prototype import features ...@@ -9,13 +9,6 @@ from torchvision.prototype import features
from torchvision.prototype.transforms import functional as F, Transform from torchvision.prototype.transforms import functional as F, Transform
class DecodeImage(Transform):
_transformed_types = (features.EncodedImage,)
def _transform(self, inpt: torch.Tensor, params: Dict[str, Any]) -> features.Image:
return F.decode_image_with_pil(inpt) # type: ignore[no-any-return]
class LabelToOneHot(Transform): class LabelToOneHot(Transform):
_transformed_types = (features.Label,) _transformed_types = (features.Label,)
......
...@@ -166,13 +166,6 @@ from ._misc import ( ...@@ -166,13 +166,6 @@ from ._misc import (
normalize_video, normalize_video,
) )
from ._temporal import uniform_temporal_subsample, uniform_temporal_subsample_video from ._temporal import uniform_temporal_subsample, uniform_temporal_subsample_video
from ._type_conversion import ( from ._type_conversion import pil_to_tensor, to_image_pil, to_image_tensor, to_pil_image
decode_image_with_pil,
decode_video_with_av,
pil_to_tensor,
to_image_pil,
to_image_tensor,
to_pil_image,
)
from ._deprecated import get_image_size, rgb_to_grayscale, to_grayscale, to_tensor # usort: skip from ._deprecated import get_image_size, rgb_to_grayscale, to_grayscale, to_tensor # usort: skip
from typing import Any, Dict, Tuple, Union from typing import Union
import numpy as np import numpy as np
import PIL.Image import PIL.Image
import torch import torch
from torchvision.io.video import read_video
from torchvision.prototype import features from torchvision.prototype import features
from torchvision.prototype.utils._internal import ReadOnlyTensorBuffer
from torchvision.transforms import functional as _F from torchvision.transforms import functional as _F
@torch.jit.unused
def decode_image_with_pil(encoded_image: torch.Tensor) -> features.Image:
image = torch.as_tensor(np.array(PIL.Image.open(ReadOnlyTensorBuffer(encoded_image)), copy=True))
if image.ndim == 2:
image = image.unsqueeze(2)
return features.Image(image.permute(2, 0, 1))
@torch.jit.unused
def decode_video_with_av(encoded_video: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, Dict[str, Any]]:
import unittest.mock
with unittest.mock.patch("torchvision.io.video.os.path.exists", return_value=True):
return read_video(ReadOnlyTensorBuffer(encoded_video)) # type: ignore[arg-type]
@torch.jit.unused @torch.jit.unused
def to_image_tensor(image: Union[torch.Tensor, PIL.Image.Image, np.ndarray]) -> features.Image: def to_image_tensor(image: Union[torch.Tensor, PIL.Image.Image, np.ndarray]) -> features.Image:
if isinstance(image, np.ndarray): if isinstance(image, np.ndarray):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment