Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
vision
Commits
9f0afd55
Unverified
Commit
9f0afd55
authored
Aug 24, 2023
by
vfdev
Committed by
GitHub
Aug 24, 2023
Browse files
Replaced ConvertImageDtype by ToDtype in reference scripts (#7862)
Co-authored-by:
Nicolas Hug
<
nh.nicolas.hug@gmail.com
>
parent
4491ca2e
Changes
6
Show whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
17 additions
and
11 deletions
+17
-11
references/classification/presets.py
references/classification/presets.py
+2
-2
references/detection/presets.py
references/detection/presets.py
+2
-2
references/detection/transforms.py
references/detection/transforms.py
+5
-2
references/segmentation/presets.py
references/segmentation/presets.py
+2
-2
references/segmentation/transforms.py
references/segmentation/transforms.py
+5
-2
references/segmentation/v2_extras.py
references/segmentation/v2_extras.py
+1
-1
No files found.
references/classification/presets.py
View file @
9f0afd55
...
...
@@ -61,7 +61,7 @@ class ClassificationPresetTrain:
transforms
.
extend
(
[
T
.
ConvertImageDtype
(
torch
.
float
),
T
.
ToDtype
(
torch
.
float
,
scale
=
True
)
if
use_v2
else
T
.
ConvertImageDtype
(
torch
.
float
),
T
.
Normalize
(
mean
=
mean
,
std
=
std
),
]
)
...
...
@@ -106,7 +106,7 @@ class ClassificationPresetEval:
transforms
.
append
(
T
.
PILToTensor
())
transforms
+=
[
T
.
ConvertImageDtype
(
torch
.
float
),
T
.
ToDtype
(
torch
.
float
,
scale
=
True
)
if
use_v2
else
T
.
ConvertImageDtype
(
torch
.
float
),
T
.
Normalize
(
mean
=
mean
,
std
=
std
),
]
...
...
references/detection/presets.py
View file @
9f0afd55
...
...
@@ -73,7 +73,7 @@ class DetectionPresetTrain:
# Note: we could just convert to pure tensors even in v2.
transforms
+=
[
T
.
ToImage
()
if
use_v2
else
T
.
PILToTensor
()]
transforms
+=
[
T
.
ConvertImage
Dtype
(
torch
.
float
)]
transforms
+=
[
T
.
To
Dtype
(
torch
.
float
,
scale
=
True
)]
if
use_v2
:
transforms
+=
[
...
...
@@ -103,7 +103,7 @@ class DetectionPresetEval:
else
:
raise
ValueError
(
f
"backend can be 'datapoint', 'tensor' or 'pil', but got
{
backend
}
"
)
transforms
+=
[
T
.
ConvertImage
Dtype
(
torch
.
float
)]
transforms
+=
[
T
.
To
Dtype
(
torch
.
float
,
scale
=
True
)]
if
use_v2
:
transforms
+=
[
T
.
ToPureTensor
()]
...
...
references/detection/transforms.py
View file @
9f0afd55
...
...
@@ -53,14 +53,17 @@ class PILToTensor(nn.Module):
return
image
,
target
class
ConvertImage
Dtype
(
nn
.
Module
):
def
__init__
(
self
,
dtype
:
torch
.
dtype
)
->
None
:
class
To
Dtype
(
nn
.
Module
):
def
__init__
(
self
,
dtype
:
torch
.
dtype
,
scale
:
bool
=
False
)
->
None
:
super
().
__init__
()
self
.
dtype
=
dtype
self
.
scale
=
scale
def
forward
(
self
,
image
:
Tensor
,
target
:
Optional
[
Dict
[
str
,
Tensor
]]
=
None
)
->
Tuple
[
Tensor
,
Optional
[
Dict
[
str
,
Tensor
]]]:
if
not
self
.
scale
:
return
image
.
to
(
dtype
=
self
.
dtype
),
target
image
=
F
.
convert_image_dtype
(
image
,
self
.
dtype
)
return
image
,
target
...
...
references/segmentation/presets.py
View file @
9f0afd55
...
...
@@ -60,7 +60,7 @@ class SegmentationPresetTrain:
]
else
:
# No need to explicitly convert masks as they're magically int64 already
transforms
+=
[
T
.
ConvertImage
Dtype
(
torch
.
float
)]
transforms
+=
[
T
.
To
Dtype
(
torch
.
float
,
scale
=
True
)]
transforms
+=
[
T
.
Normalize
(
mean
=
mean
,
std
=
std
)]
if
use_v2
:
...
...
@@ -97,7 +97,7 @@ class SegmentationPresetEval:
transforms
+=
[
T
.
ToImage
()
if
use_v2
else
T
.
PILToTensor
()]
transforms
+=
[
T
.
ConvertImage
Dtype
(
torch
.
float
),
T
.
To
Dtype
(
torch
.
float
,
scale
=
True
),
T
.
Normalize
(
mean
=
mean
,
std
=
std
),
]
if
use_v2
:
...
...
references/segmentation/transforms.py
View file @
9f0afd55
...
...
@@ -81,11 +81,14 @@ class PILToTensor:
return
image
,
target
class
ConvertImage
Dtype
:
def
__init__
(
self
,
dtype
):
class
To
Dtype
:
def
__init__
(
self
,
dtype
,
scale
=
False
):
self
.
dtype
=
dtype
self
.
scale
=
scale
def
__call__
(
self
,
image
,
target
):
if
not
self
.
scale
:
return
image
.
to
(
dtype
=
self
.
dtype
),
target
image
=
F
.
convert_image_dtype
(
image
,
self
.
dtype
)
return
image
,
target
...
...
references/segmentation/v2_extras.py
View file @
9f0afd55
...
...
@@ -78,6 +78,6 @@ class CocoDetectionToVOCSegmentation(v2.Transform):
def
forward
(
self
,
image
,
target
):
segmentation_mask
=
self
.
_coco_detection_masks_to_voc_segmentation_mask
(
target
)
if
segmentation_mask
is
None
:
segmentation_mask
=
torch
.
zeros
(
v2
.
functional
.
get_
spatial_
size
(
image
),
dtype
=
torch
.
uint8
)
segmentation_mask
=
torch
.
zeros
(
v2
.
functional
.
get_size
(
image
),
dtype
=
torch
.
uint8
)
return
image
,
datapoints
.
Mask
(
segmentation_mask
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment